Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Hand-held cordless vacuum cleaner

Inactive Publication Date: 2005-04-21
BLACK & DECKER INC
View PDF99 Cites 166 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0003] One problem with such vacuum cleaners concerns the relatively rapid rate with which the efficiency and performance of such vacuum cleaners may deteriorate. Specifically, the use of such vacuums to collect relatively small sized particles can rapidly load the filter and substantially reduce the amount of air that passes therethrough. When filter loading is encountered in the known hand vacuum configurations, the user must disassemble the vacuum, remove the filter, clean (or dispose of and replace) the filter and replace the filter. In some situations, the user may be reluctant to perform the tasks of removing and cleaning the filter due to the unwholesomeness of the material that has accumulated on the filter. In situations where the filter is heavily loaded, the vacuum will have a relatively low efficiency and consequently, vacuuming tasks will take longer, the vacuum will experience greater wear, and if battery powered, the user will be able to perform relatively fewer vacuuming tasks per charge. SUMMARY OF THE INVENTION
[0006] In yet another form, the present teachings provide a hand-held portable vacuum including a housing with a handle, a dirt cup, an impeller at least partially disposed in the housing, a filter and a filter cleaning device. The dirt cup, which is removably attached to the housing, has an inlet and defines a container for storage of dirt and debris therein. The filter, which is disposed between the impeller and the inlet, is formed with a plurality of pleats. The filter cleaning device is coupled to at least one of the housing and the dirt cup and includes at least one rib and a hub. The hub is coupled to one of the filter and the rib and configured to rotate the one of the filter and the rib about the other one of the filter to generate contact between the rib and the filter to at least partially dislodge accumulated dirt and debris from the pleats.

Problems solved by technology

One problem with such vacuum cleaners concerns the relatively rapid rate with which the efficiency and performance of such vacuum cleaners may deteriorate.
In some situations, the user may be reluctant to perform the tasks of removing and cleaning the filter due to the unwholesomeness of the material that has accumulated on the filter.
In situations where the filter is heavily loaded, the vacuum will have a relatively low efficiency and consequently, vacuuming tasks will take longer, the vacuum will experience greater wear, and if battery powered, the user will be able to perform relatively fewer vacuuming tasks per charge.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Hand-held cordless vacuum cleaner
  • Hand-held cordless vacuum cleaner
  • Hand-held cordless vacuum cleaner

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0058] With reference to FIG. 1 of the drawings, a vacuum kit constructed in accordance with the teachings of the present invention is generally indicated by reference numeral 10. The vacuum kit 10 may include a hand-held cordless vacuum 10a and an optional set of accessories 10b. With reference to FIGS. 2 and 3, the vacuum 10a may include a dirt cup assembly 12 and a housing assembly 14. In the particular example provided, the dirt cup assembly 12 includes an inlet housing or dirt cup 20 and an elbow 22, while the housing assembly 14 may include motor assembly 30, an outlet housing or housing 32, a filter system 34, a filter cleaning system 36 and a latch release 38 having a conventional latch mechanism 40 and a conventional retaining tab 42 that may be integrally formed with the housing 32.

[0059] In FIGS. 4 and 5, the dirt cup 20 includes a wall member 50 that defines a container-like housing structure 52 and an inlet port 54 that may be formed through the housing structure 52 an...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A hand-held vacuum cleaner with a container for the storage of dirt and debris therein. To provide improved efficiency and performance, the hand-held vacuum may employ a primary HEPA filter, a device for swirling a dirt and debris laden air flow and / or a mechanized filter cleaning device. Swirling may be employed to direct entrained dirt and debris in a desired direction relative to the container to slow the rate with which dirt and debris accumulates on the primary filter and / or to centrifugally remove dirt and debris from the air flow. Mechanized cleaning is employed to shake, scrape or otherwise remove accumulated dirt and debris from the primary filter.

Description

[0001] The present invention generally relates to hand-held portable vacuum cleaners and improvements thereto. [0002] Typically, hand-held portable vacuum cleaners employ a motor that is powered by either a main supply of electricity (i.e., a source of alternating current power) or a battery pack, which may be rechargeable, to drive an impeller. Rotation of the impeller generates an air flow which entrains therein dirt and debris which enter the vacuum cleaner via an inlet. One or more filters may be employed to retain the dirt and debris within the vacuum. [0003] One problem with such vacuum cleaners concerns the relatively rapid rate with which the efficiency and performance of such vacuum cleaners may deteriorate. Specifically, the use of such vacuums to collect relatively small sized particles can rapidly load the filter and substantially reduce the amount of air that passes therethrough. When filter loading is encountered in the known hand vacuum configurations, the user must d...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): A47L5/24A47L9/12A47L9/14A47L9/16A47L9/20A47L9/28
CPCA47L5/24A47L9/127A47L9/1608A47L9/165A47L9/1666A47L9/2884A47L9/2805A47L9/2842A47L9/2857A47L9/2873A47L9/20
Inventor MILLIGAN, MICHAEL A.MOONEY, PATRICK W.SHEN, XIANYAOKIMBALL, TED A.WALKER, ANDREW
Owner BLACK & DECKER INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products