Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Autonomous surface cleaning robot for wet and dry cleaning

a technology for cleaning robots and floors, applied in carpet cleaners, distance measurement, instruments, etc., can solve the problems of emulsifying contaminates, unable to teach an affordable, autonomous floor cleaning robot for applying cleaning fluid to the floor to wet clean floors in the home, and increasing the contamination of cleaning fluid

Inactive Publication Date: 2006-09-07
IROBOT CORP
View PDF0 Cites 116 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The present invention is an autonomous cleaning robot that can move over a cleaning surface and collect loose particles or apply a cleaning fluid. The robot has a chassis and a transport drive system that moves it in a forward direction. The robot has a first cleaning zone with elements to collect loose particles and a second cleaning zone with elements to apply a cleaning fluid and collect it afterward. The robot is controlled by a master control module and powered by a self-contained power module. The technical effect of this invention is to provide a robot that can autonomously move over a cleaning surface and perform efficient cleaning tasks.

Problems solved by technology

While each of the above examples provide affordable autonomous floor clearing robots for collecting loose particulates, there is heretofore no teaching of an affordable autonomous floor cleaning robot for applying a cleaning fluid onto the floor to wet clean floors in the home.
The cleaning fluid interacts with contaminates on the surface and may dissolve or otherwise emulsify contaminates into the cleaning fluid.
One problem with the manual floor cleaning methods of the prior art is that after cleaning an area of the floor surface, the waste liquid must be rinsed from the mop or sponge, and this usually done by dipping the mop or sponge back into the container filled with cleaning fluid.
The rinsing step contaminates the cleaning fluid with waste liquid and the cleaning fluid becomes more contaminated each time the mop or sponge is rinsed.
As a result, the effectiveness of the cleaning fluid deteriorates as more of the floor surface area is cleaned.
While the traditional manual method is effective for floor cleaning, it is labor intensive and time consuming.
Moreover, its cleaning effectiveness decreases as the cleaning fluid becomes contaminated.
While the device disclosed by Betker et al. is usable to autonomously wet clean large floor areas, it is not suitable for the home market.
In particular, the industrial autonomous cleaning device disclosed by Betker et al. is too large, costly and complex for use in the home and consumes too much electrical power to provide a practical solution for the home wet floor cleaning market.
While Wright et al. teach a self contained wet cleaning device as well as an improved wet cleaning method that separates waste liquid from cleaning fluid the device is manually operated and lacks robotic functionality.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Autonomous surface cleaning robot for wet and dry cleaning
  • Autonomous surface cleaning robot for wet and dry cleaning
  • Autonomous surface cleaning robot for wet and dry cleaning

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0043] Referring now to the drawings where like reference numerals identify corresponding or similar elements throughout the several views, FIG. 1 depicts an isometric view showing the external surfaces of an autonomous cleaning robot 100 according to a preferred embodiment of the present invention. The robot 100 is configured with a cylindrical volume having a generally circular cross-section 102 with a top surface and a bottom surface that is substantially parallel and opposed to the top surface. The circular cross-section 102 is defined by three mutually perpendicular axes; a central vertical axis 104, a fore-aft axis 106, and a transverse axis 108. The robot 100 is movably supported with respect to a surface to be cleaned, hereinafter, the cleaning surface. The cleaning surface is substantially horizontal. The robot 100 is generally supported in rolling contact with the cleaning surface by a plurality of wheels or other rolling elements attached to a chassis 200. In the preferre...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

An autonomous floor cleaning robot includes a transport drive and control system arranged for autonomous movement of the robot over a floor for performing cleaning operations. The robot chassis carries a first cleaning zone comprising cleaning elements arranged to suction loose particulates up from the cleaning surface and a second cleaning zone comprising cleaning elements arraigned to apply a cleaning fluid onto the surface and to thereafter collect the cleaning fluid up from the surface after it has been used to clean the surface. The robot chassis carries a supply of cleaning fluid and a waste container for storing waste materials collected up from the cleaning surface.

Description

[0001] This invention claims priority from Provisional Application Ser. No. 60 / 654,839 filed Feb. 18, 2005. CROSS-REFERENCE TO RELATED APPLICATIONS [0002] This application relates to co-pending and co-assigned patent application Ser. No. ______, entitled AUTONOMOUS SURFACE CLEANING ROBOT FOR DRY CLEANING, and patent application Ser. No. ______ entitled, AUTONOMOUS SURFACE CLEANING ROBOT FOR WET CLEANING both of which are filed even dated herewith and incorporated herein by this reference.BACKGROUND OF THE INVENTION [0003] 1. Field of the Invention [0004] The present invention relates to cleaning devices, and more particularly, to an autonomous surface cleaning robot. In particular, the surface cleaning robot includes two separate cleaning zones with a first cleaning zone configured to collect loose particulates from the surface and with a second cleaning zone configured to apply a cleaning fluid onto the surface, scrub the surface and thereafter collect a waste liquid from the surfa...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): G06F19/00
CPCA22C17/0013B26D1/28B26D1/46B26D7/0608A47L11/302A47L11/34A47L11/4011A47L11/4061A47L11/4072A47L11/4083A47L2201/00
Inventor ZIEGLER, ANDREWGILBERT, DUANEMORSE, CHRISTOPHER JOHNPRATT, SCOTTSANDIN, PAULDUSSAULT, NANCYJONES, ANDREW
Owner IROBOT CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products