Power transmission device for vehicle

a technology for power transmission devices and vehicles, which is applied in hybrid vehicles, gearing, transportation and packaging, etc., can solve the problems of increasing the number of clutches and the size of the entire power transmission devi

Inactive Publication Date: 2012-01-12
DENSO CORP
View PDF8 Cites 42 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0039]With such the construction, the efficient running corre...

Problems solved by technology

Therefore, the number of the clutches is increased, and eve...

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Power transmission device for vehicle
  • Power transmission device for vehicle
  • Power transmission device for vehicle

Examples

Experimental program
Comparison scheme
Effect test

first embodiment

[0068]Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a skeleton diagram showing a construction of a vehicular power transmission device according to the first embodiment. The vehicular power transmission device according to the present embodiment is mounted to a hybrid vehicle. The vehicular power transmission device has an engine 1, motors MG1, MG2, a first engine input shaft 2, a damper 3, a second engine input shaft 4, a first drive gear 5, a first motor input shaft 6, a second drive gear 7, an input side clutch 8, an output shaft 9, a first driven gear 10, a first output side clutch 11, a second driven gear 12, a second output side clutch 13, and a differential gear 14. The vehicular power transmission device transmits powers (i.e., driving torque) generated by the engine 1 and the motors MG1, MG2 to an axle 15, thereby generating driving forces in driving wheels 16, 17.

[0069]The engine 1 is an internal combus...

second embodiment

[0151]Next, a second embodiment of the present invention will be described, focusing on differences from the first embodiment. As shown in FIG. 13, differently from the first embodiment, in the vehicular power transmission device according to the present embodiment, the input side clutch 8 that engages and disengages the first motor input shaft 6 and the second engine input shaft 4 is arranged between the motor MG1 and the second drive gear 7, not between the first drive gear 5 and the second drive gear 7.

[0152]In order to realize such the arrangement, a cylindrical motor input shaft 18 is attached to a portion of the input side clutch 8 that rotates with the first motor input shaft 6. The cylindrical motor input shaft 18 coaxially surrounds another portion of the input side clutch 8 that rotates with the second engine input shaft 4. The cylindrical motor input shaft 18 coaxially surrounds the second engine input shaft 4 and extends toward the engine 1. The cylindrical motor input s...

third embodiment

[0156]Next, a third embodiment of the present invention will be described, focusing on differences from the first embodiment. Differently from the first embodiment, in the vehicular power transmission device according to the present embodiment, the input side clutch 8 that engages and disengages the first motor input shaft 6 and the second engine input shaft 4 is arranged between the engine 1 and the first drive gear 5 as shown in FIG. 14, not between the first drive gear 5 and the second drive gear 7.

[0157]In order to realize such the arrangement, a cylindrical engine input shaft 19 is attached to a portion of the input side clutch 8 that rotates with the second engine input shaft 4. The cylindrical engine input shaft 19 coaxially surrounds another portion of the input side clutch 8 that rotates with the first motor input shaft 6. The cylindrical engine input shaft 19 coaxially surrounds the first motor input shaft 6 and extends toward the motor MG1. The cylindrical engine input sh...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

An output shaft is arranged to be lateral and parallel to engine input shafts and a motor input shaft. An engine side gear mechanism for transmitting a power of the engine input shafts to the output shaft is provided. A motor side gear mechanism for transmitting a power of the motor input shaft to the output shaft is provided. An input side clutch engages and disengages the engine input shafts and the motor input shaft. When the input side clutch is engaged, the power transmission between a position where the engine side gear mechanism is arranged on the engine input shafts and a position where the motor side gear mechanism is arranged on the motor input shaft is invariably possible.

Description

CROSS REFERENCE TO RELATED APPLICATION[0001]This application is based on and incorporates herein by reference Japanese Patent Applications No. 2010-155874 filed on Jul. 8, 2010 and No. 2011-20690 filed on Feb. 2, 2011.BACKGROUND OF THE INVENTION[0002]1. Field of the Invention[0003]The present invention relates to a power transmission device for a vehicle and is suitably used for a hybrid vehicle.[0004]2. Description of Related Art[0005]Conventionally, as a power transmission device used for a hybrid vehicle, there has been known a device described in Patent document 1 (JP-A-H09-123773). As shown in FIG. 1 of Patent document 1, the power transmission device has an engine input shaft 32, to which a power generated by an engine 51 is inputted, and a cylindrical first output shaft 33, to which second and fourth gears are attached. The power transmission device is structured such that the engine input shaft 32 and the cylindrical first output shaft 33 are engaged and disengaged by a firs...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): F16H37/06B60L50/16
CPCB60K6/442B60K6/48B60K6/547F16H3/126F16H37/065Y10T477/26Y02T10/6234B60W20/30Y10S903/902B60K6/54Y10T74/19051Y02T10/6221Y02T10/62B60K2006/4816F16H3/091B60K6/44F16H2003/0803F16H3/093
Inventor IMAMURA, TOMONORIKOSHIMOTO, SHINICHIROUOKADA, HIROSHISAITO, TOMOHIRO
Owner DENSO CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products