Maximum a posteriori probability decoder

a probability decoder and probability decoder technology, applied in the field of communication systems, can solve problems such as hardware intensiveness of map decoders and certain drawbacks

Active Publication Date: 2011-08-02
HARRIS CORP
View PDF22 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

Despite the advantages of the above described MAP decoder, it suffers from certain drawbacks.
For example, the MAP decoder is hardware intensive.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Maximum a posteriori probability decoder
  • Maximum a posteriori probability decoder
  • Maximum a posteriori probability decoder

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0069]In this scenario, the CCE is selected as the CCE 104 shown in FIG. 2A. The description provided above in relation to FIGS. 2A-2E is sufficient for understanding the CCE of the present example. The data stream dK input into the CCE 104 is defined as 1 0 0 1 1 0 (as shown in FIG. 2E). Accordingly, the CCE 104 generates an output sequence R(n) defined as 11 10 11 11 01 01. If there is no corruption of the signal R(n), then the sequence rn of soft-decision bits can be defined as rideal(n)=7 7 7 −7 7 7 7 7 −7 7 −7 7. It should be noted that a positive seven (+7) is the highest assignable soft-decision value and negative seven (−7) is the lowest assignable soft-decision value. More particularly, a positive seven (+7) indicates a strong probability that a bit of the sequence R(n) has a value equal to one (1). A negative seven (−7) indicates a strong probability that a bit of the sequence R(n) has a value equal to zero (0).

[0070]Alternatively, if there is corruption of the signal R(n)...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A method is provided for performing a MAP probability decoding of a sequence R(n) including N bits of encoded data. The method includes the steps of: (a) generating a sequence rn of sot-values by processing the sequence R(n); (b) performing a forward recursion by computing alpha values αS,SG utilizing the soft-decision values; (c) performing a backward recursion by computing beta values βS,SG utilizing the soft-decision values; and (d) performing an extrinsic computation by computing probability values p′k. The alpha values αS,SG are relative log-likelihoods of an encoding process arriving at various states. The beta values βS,SG are relative log-likelihoods of the encoding process arriving at various states. The probability values p′k represent a set of probabilities indicating that each data bit of an input sequence dK had a value equal to zero or one. The sequence R(n) represents an encoded form of the input sequence dK.

Description

BACKGROUND OF THE INVENTION[0001]1. Statement of the Technical Field[0002]The invention concerns communications systems comprising encoders and decoders. More particularly, the invention relates to maximum a posteriori decoders implementing an improved technique for performing maximum a posteriori probability decoding.[0003]2. Description of the Related Art[0004]Convolutional codes are commonly used in communications systems to reduce errors in transmission. Likewise, various decoding algorithms are known that can be used for decoding such convolutional codes at a data receiver. One such known type of decoding algorithm is the maximum a posteriori (MAP) decoder. Conventional MAP decoders are often comprised of a branch metric unit, a forward path metric unit, a backward path metric unit, a memory device and an extrinsic computation unit. The branch metric unit is generally configured to generate branch metric values for symbols contained in the received encoded information. The bran...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Patents(United States)
IPC IPC(8): H03M13/03
CPCH03M13/2957H03M13/3927H03M13/6502
Inventor LAPRADE, MARIACOBB, MATTHEW C.DYSON, TIMOTHY F.
Owner HARRIS CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products