Simple harmonic oscillation based experimental device and method for measuring Young's modulus with beam bending method

A simple harmonic vibration and Young's modulus technology, which is applied in the field of university physics experiments, can solve the problems of easy damage, electric shock to the experimenter, and single principle, so as to enhance the ability to solve problems, facilitate observation and measurement, and intuitive experimental phenomena Effect

Inactive Publication Date: 2016-10-12
HUANGHE S & T COLLEGE
View PDF3 Cites 5 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0005] First, the static tensile method is usually used to measure the Young's modulus of metal materials, and the principle is relatively simple
[0006] Second, according to the optical lever amplification principle, the sag of the midpoint of the rectangular cross-section metal beam is measured through the amplification system composed of the optical lever, the telescope and the ruler. Although the method is ingenious, the principle is abstract and difficult to understand, and the adjustment of the telescope is relatively difficult. It is large, and there are many precautions, and it is very easy to get tired and make mistakes in the data, which will affect the accuracy of the measurement results.
[0007] Third, weights are generally used to apply tension to metal beams, and the calculation of tension with the nominal mass of weights is inaccurate, thus affecting the accuracy of experimental results
[0008] Fourth, the plane mirror of the optical lever is generally made of glass, which is easily damaged during the experiment
[0009] Fifth, the scale illuminator generally adopts a small straight tube fluorescent lamp, the brightness is not easy to adjust, and it is easy to be damaged, and because there is a capacitor in the power supply device, if it is not discharged in time after use, the experimenter will be easily shocked by electric shock

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Simple harmonic oscillation based experimental device and method for measuring Young's modulus with beam bending method
  • Simple harmonic oscillation based experimental device and method for measuring Young's modulus with beam bending method
  • Simple harmonic oscillation based experimental device and method for measuring Young's modulus with beam bending method

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0044] Among the figure, two columns 4 are set on the base 1, and a steel knife edge is respectively fixed at the upper ends of the two columns 4, i.e. the column knife edge 5, the blades of the two knife edges are parallel to each other, and the two ends of a rectangular cross-section metal beam 6 freely straddle the Placed on the edge of the upper ends of the two columns 4, a copper frame 7 is placed on the rectangular cross-section metal beam 6, and the contact between the copper frame 7 and the rectangular cross-section metal beam 6 is also a knife edge, that is, the copper frame knife edge 8, and the copper frame knife edge 8 Just in the middle of the knife edges at the upper ends of the two columns, a force-sensitive sensor 9 is arranged at the lower end of the copper frame 7, and the force-sensitive sensor 9 is connected to the iron block 37 through a connecting device. Set platform one 17 . The force-sensitive sensor 9 is connected with the force-sensitive sensor measu...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The invention provides a simple harmonic oscillation based experimental device and method for measuring the Young's modulus with a beam bending method, relates to a Young's modulus measurement device and method and aims to solve the problems that the experimental principle of the Young's modulus measurement with the beam bending method in current college physical experiments is comparatively single and abstract and a telescope is greatly difficult to adjust. The device is characterized in that two vertical columns are arranged on a base, two ends of a metal beam with a rectangular section are freely arranged in a spanning manner at tool edges at the upper ends of the vertical columns, the metal beam is sleeved with a copper frame, a force sensor and an iron block are arranged at the lower end, an electromagnet device is arranged below the iron block, a scale is arranged on a scale base, and a laser and a photoelectric sensor connected with an intelligent photoelectric timer are arranged on the scale. According to the method, a cycle of simple harmonic oscillation performed by a metal beam spring oscillator is obtained on the basis of measurement of a cycle of the simple harmonic oscillation performed by light spots formed on the scale by a laser beam which is emitted by the laser and reflected through a plane mirror of an optical lever, the cycle of the simple harmonic oscillation performed by the metal beam spring oscillator is substituted into a formula, and the Young's modulus is obtained through calculation. The device and the method are applicable to measurement of the Young's modulus.

Description

technical field [0001] The invention relates to a university physics experiment, in particular to an experimental device and method for measuring Young's modulus by a beam bending method based on simple harmonic vibration. Background technique [0002] The change in shape of a solid under the action of an external force is called deformation. It can be divided into elastic deformation and normative deformation. The deformation that an object can completely return to its original shape after the external force is removed is called elastic deformation. If the external force applied to the object is too large, so that after the external force is removed, the object cannot completely return to its original shape, leaving residual deformation, which is called normative deformation. In this experiment, only elastic deformation is studied. Therefore, the magnitude of the external force should be controlled to ensure that the object can return to its original shape after the exte...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(China)
IPC IPC(8): G01N29/04G09B23/10
CPCG01N29/045G01N2291/0234G09B23/10
Inventor 田凯张金平董雪峰王二萍张洋洋
Owner HUANGHE S & T COLLEGE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products