Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Optical image capturing system

An optical imaging system and imaging surface technology, applied in optics, optical components, instruments, etc., can solve problems such as inability to meet photography requirements

Active Publication Date: 2017-02-22
ABILITY OPTO ELECTRONICS TECH
View PDF4 Cites 15 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0003] Traditional optical systems mounted on portable devices mostly use four-element or five-element lens structures. However, due to the continuous improvement of pixels in portable devices and the demand for large apertures such as low-light and night shooting functions from end consumers, existing The advanced optical imaging system can no longer meet the higher-level photography requirements

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Optical image capturing system
  • Optical image capturing system
  • Optical image capturing system

Examples

Experimental program
Comparison scheme
Effect test

no. 1 example

[0207] Please refer to Figure 1A and Figure 1B ,in Figure 1A Representing a schematic diagram of an optical imaging system according to a first embodiment of the present invention, Figure 1B From left to right are the spherical aberration, astigmatism and optical distortion curves of the optical imaging system of the first embodiment. Figure 1C It is the lateral aberration diagram of the meridian plane light fan and the sagittal plane light fan of the optical imaging system of the first embodiment, the longest working wavelength and the shortest working wavelength passing through the edge of the aperture at the 0.7 field of view. Depend on Figure 1A It can be seen that the optical imaging system includes a first lens 110, an aperture 100, a second lens 120, a third lens 130, a fourth lens 140, a fifth lens 150, a sixth lens 160, and an infrared filter from the object side to the image side. 180 , an imaging surface 190 and an image sensing element 192 .

[0208] The fi...

no. 2 example

[0274] Please refer to Figure 2A and Figure 2B ,in Figure 2A A schematic diagram showing an optical imaging system according to a second embodiment of the present invention, Figure 2B From left to right are the spherical aberration, astigmatism and optical distortion curves of the optical imaging system of the second embodiment. Figure 2C It is a lateral aberration diagram of the optical imaging system of the second embodiment at a field of view of 0.7. Depend on Figure 2A It can be seen that the optical imaging system includes a first lens 210, a second lens 220, a third lens 230, an aperture 200, a fourth lens 240, a fifth lens 250, a sixth lens 260, and an infrared filter from the object side to the image side. 280 , an imaging surface 290 and an image sensing element 292 .

[0275] The first lens 210 has a negative refractive power and is made of glass. The object side 212 is convex, and the image side 214 is concave, both of which are aspherical.

[0276] The ...

no. 3 example

[0298] Please refer to Figure 3A and Figure 3B ,in Figure 3A A schematic diagram showing an optical imaging system according to a third embodiment of the present invention, Figure 3B From left to right are the spherical aberration, astigmatism and optical distortion curves of the optical imaging system of the third embodiment. Figure 3C It is a lateral aberration diagram of the optical imaging system of the third embodiment at a field of view of 0.7. Depend on Figure 3A It can be seen that the optical imaging system sequentially includes a first lens 310, a second lens 320, a third lens 330, a diaphragm 300, a fourth lens 340, a fifth lens 350, a sixth lens 360, and an infrared filter from the object side to the image side. 380 , an imaging surface 390 and an image sensing element 392 .

[0299] The first lens 310 has negative refractive power and is made of glass. The object side 312 is convex, and the image side 314 is concave, both of which are aspherical.

[03...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention discloses an optical image capturing system. The first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens are sequentially included from the object side to the image side. At least one of the first lens to the fifth lens has a positive refractive power. The sixth lens may have a negative refractive power, both surfaces being aspherical, wherein at least one surface of the sixth lens has a counter-point. The lens with the refractive power in the optical imaging system is the first lens to the sixth lens. When the specific conditions are met, it is possible to have greater light collection and better optical path adjustment capability to improve the image quality.

Description

technical field [0001] The invention relates to an optical imaging system, and in particular to a miniaturized optical imaging system applied to electronic products. Background technique [0002] In recent years, with the rise of portable electronic products with photography functions, the demand for optical systems has increased day by day. The photosensitive element of the general optical system is nothing more than a photosensitive coupling device (Charge Coupled Device; CCD) or a complementary metal oxide semiconductor element (Complementary Metal-Oxide Semiconductor Sensor; CMOS Sensor). With the improvement of the semiconductor manufacturing process, The pixel size of the photosensitive element is reduced, and the optical system is gradually developing into the high-pixel field, so the requirements for image quality are also increasing. [0003] Traditional optical systems mounted on portable devices mostly use four-element or five-element lens structures. However, du...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(China)
IPC IPC(8): G02B13/00G02B13/18
CPCG02B13/0045G02B13/18G02B9/62G02B27/646
Inventor 唐乃元张永明
Owner ABILITY OPTO ELECTRONICS TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products