Eureka AIR delivers breakthrough ideas for toughest innovation challenges, trusted by R&D personnel around the world.

a ta-hf-zr-zrb 2 Alloy bar and its preparation method

A technology for alloy rods and raw materials, which is applied in the field of Ta-Hf-Zr-ZrB2 alloy rods and their preparation, can solve the problems that the mechanical properties cannot be greatly improved, achieve good high-temperature oxidation resistance, improve room temperature plasticity, and suppress crystallization. The effect of grain growth

Active Publication Date: 2022-03-22
西安鑫昌机电设备有限责任公司
View PDF4 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

Although the high-temperature mechanical properties and fatigue strength of tantalum alloys can be improved to a certain extent by adding alloying, their mechanical properties cannot be greatly improved.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • a ta-hf-zr-zrb  <sub>2</sub> Alloy bar and its preparation method

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0024] In this embodiment Ta-Hf-Zr-ZrB 2 Alloy rods are made of raw materials with the following mass percentages: Hf 6%, Zr 6%, ZrB 2 5%, the balance is Ta and unavoidable impurities; the raw materials are all powdery raw materials, that is: Hf is Hf powder with a particle size not greater than 20 μm, Zr is Zr powder with a particle size not greater than 20 μm, ZrB 2 ZrB with a particle size not greater than 10 μm 2 Powder, Ta is Ta powder with a particle size not greater than 10 μm, of which Hf powder, Zr powder and ZrB powder 2 The mass purity of Ta powder is not less than 99.0%, and the mass purity of Ta powder is not less than 99.9%.

[0025] In this embodiment Ta-Hf-Zr-ZrB 2 The preparation method of alloy bar comprises the following steps:

[0026] Step 1, weighing each raw material according to the mass percentage, and then ball milling and mixing the weighed raw materials evenly under the protection of argon to obtain a mixed powder;

[0027] Step 2, using a hydr...

Embodiment 2

[0034] In this embodiment Ta-Hf-Zr-ZrB 2 Alloy rods are made of raw materials with the following mass percentages: Hf 6%, Zr 6%, ZrB 2 5%, the balance is Ta and unavoidable impurities; the raw materials are all powdery raw materials, that is: Hf is Hf powder with a particle size not greater than 20 μm, Zr is Zr powder with a particle size not greater than 20 μm, ZrB 2 ZrB with a particle size not greater than 10 μm 2 Powder, Ta is Ta powder with a particle size not greater than 10 μm, of which Hf powder, Zr powder and ZrB powder 2 The mass purity of Ta powder is not less than 99.0%, and the mass purity of Ta powder is not less than 99.9%.

[0035] In this embodiment Ta-Hf-Zr-ZrB 2 The preparation method of alloy bar comprises the following steps:

[0036] Step 1, weighing each raw material according to the mass percentage, and then ball milling and mixing the weighed raw materials evenly under the protection of argon to obtain a mixed powder;

[0037] Step 2, using a hydr...

Embodiment 3

[0043] In this embodiment Ta-Hf-Zr-ZrB 2 Alloy rods are made of raw materials with the following mass percentages: Hf 6%, Zr 6%, ZrB 2 5%, the balance is Ta and unavoidable impurities; the raw materials are all powdery raw materials, that is: Hf is Hf powder with a particle size not greater than 20 μm, Zr is Zr powder with a particle size not greater than 20 μm, ZrB 2 ZrB with a particle size not greater than 10 μm 2 Powder, Ta is Ta powder with a particle size not greater than 10 μm, of which Hf powder, Zr powder and ZrB powder 2 The mass purity of Ta powder is not less than 99.0%, and the mass purity of Ta powder is not less than 99.9%.

[0044] In this embodiment Ta-Hf-Zr-ZrB 2 The preparation method of alloy bar comprises the following steps:

[0045] Step 1, weighing each raw material according to the mass percentage, and then ball milling and mixing the weighed raw materials evenly under the protection of argon to obtain a mixed powder;

[0046] Step 2, using a hydr...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
particle sizeaaaaaaaaaa
particle diameteraaaaaaaaaa
diameteraaaaaaaaaa
Login to View More

Abstract

The invention provides a kind of Ta-Hf-Zr-ZrB 2 Alloy bar, made of raw materials with the following mass percentages: Hf 3%~9%, Zr 4%~8%, ZrB 2 3% ~ 7%, the balance is Ta and unavoidable impurities; the present invention also provides a method for preparing the alloy bar, comprising the following steps: 1. Weigh each raw material by mass percentage, and then weigh the The raw materials are ball milled and mixed evenly under the protection of argon to obtain the mixed powder; 2. Press molding to obtain the billet; 3. Put the billet into the shell and seal the shell after vacuuming; 4. Hot isostatic pressing sintering to obtain Ta ‑Hf‑Zr‑ZrB 2 Alloy sintered body; Five, hot extrusion, obtain Ta‑Hf‑Zr‑ZrB 2 The alloy rod material of the present invention has good high temperature oxidation resistance, room temperature plasticity and tensile strength, excellent fatigue strength, high temperature strength and superplasticity, and can be used for high temperature structural parts.

Description

technical field [0001] The invention belongs to the technical field of alloy rods, in particular to a Ta-Hf-Zr-ZrB 2 Alloy bar and method for its preparation. Background technique [0002] Tantalum alloys have been extensively studied as candidate materials for aerospace, nuclear engineering and aircraft engines since the 1950s. Although tantalum alloys are attractive in terms of room temperature plasticity, formability, corrosion resistance, and melting point, their poor fatigue strength has become a major obstacle for their application as high-temperature structural materials. At the same time, when the service temperature exceeds 1100°C, the creep resistance of tantalum alloys decreases significantly. Adding W, Hf, Zr and other alloying elements to tantalum can form a tantalum alloy with high alloy concentration, which has significantly improved high-temperature mechanical properties and good processing performance, so it is used as a high-temperature structural materia...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(China)
IPC IPC(8): C22C27/02C22C32/00C22C1/05B22F3/15B22F3/20
CPCC22C27/02C22C32/0073C22C1/05B22F3/15B22F3/20B22F2003/208
Inventor 倪明田小军
Owner 西安鑫昌机电设备有限责任公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products