PTFE layers and methods of manufacturing

a technology applied in the field of ptfe layers and manufacturing methods, can solve the problems of largely unsatisfactory conventional ptfe layers

Inactive Publication Date: 2006-10-19
TRIVASCULAR2 +1
View PDF99 Cites 85 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0004] Embodiments of the present invention provide PTFE layers and films and methods of manufacturing the PTFE layers and films. Embodiments of the present invention may include one or more layers of a fluoropolymer, such as PTFE. Embodiments of PTFE layers may include at least a portion that does not have a significant node and fibril microstructure.

Problems solved by technology

As such, the conventional methods expand the PTFE layer and impart a porosity and permeability while only providing a negligible reduction in a thickness of the PTFE layer.
In situations where a thin PTFE layer, and specifically, a thin PTFE layer having a low fluid permeability is needed, conventional PTFE layers are largely unsatisfactory due to the porosity and highly permeable nature of the expanded PTFE layer.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • PTFE layers and methods of manufacturing
  • PTFE layers and methods of manufacturing
  • PTFE layers and methods of manufacturing

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0040] Embodiments of the present invention relate generally to thin PTFE layers, PTFE films, composite films having two or more PTFE layers and methods of manufacturing the PTFE layers, films and composite films. Some particular embodiments are directed to thin PTFE layers having low or substantially no fluid permeability with a microstructure that does not include significant fibril and nodal structure as is common with expanded PTFE layers. It may also be desirable for some embodiments of such thin PTFE layers that have a high degree of limpness and suppleness so to allow mechanical manipulation or strain of such a PTFE layer without significant recoil or spring back. Such PTFE layers may be manufactured and used for construction of endovascular grafts or other medical devices. For some applications, embodiments of PTFE films may include one or more discrete layers of PTFE that are secured together to form a composite film. As used herein, the term “composite film” generally refe...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
volumeaaaaaaaaaa
volumeaaaaaaaaaa
volumeaaaaaaaaaa
Login to view more

Abstract

Single, continuous PTFE layers having lateral zones of varied characteristics are described. Some of the lateral zone embodiments may include PTFE material having little or no nodal and fibril microstructure. Methods of manufacturing PTFE layers allow for controllable permeability and porosity of the layers, in addition to other characteristics. The characteristics may vary from one lateral zone of a PTFE layer to a second lateral zone of a PTFE layer. In some embodiments, the PTFE layers may act as a barrier layer in an endovascular graft or other medical device.

Description

BACKGROUND OF THE INVENTION [0001] Polytetrafluoroethylene (PTFE) layers have been used for the manufacture of various types of intracorporeal devices, such as vascular grafts. Such vascular grafts may be used to replace, reinforce, or bypass a diseased or injured body lumen. One conventional method of manufacturing “expanded” PTFE layers is described in U.S. Pat. No. 3,953,566 by Gore. In the methods described therein, a PTFE paste is formed by combining a PTFE resin and a lubricant. The PTFE paste may be extruded. After the lubricant is removed from the extruded paste, the PTFE article is stretched to create a porous, high strength PTFE article. The expanded PTFE layer is characterized by a porous, open microstructure that has nodes interconnected by fibrils. [0002] Such an expansion process increases the volume of the PTFE layer by increasing the porosity, decreasing the density and increasing the internodal distance between adjacent nodes in the microstructure while not signific...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): B32B1/08B29C48/08
CPCA61L27/16Y10T428/1352A61L27/56B29C55/005B29K2027/18A61L27/507Y10T428/1393A61F2/82B29C43/222B29C43/24B29C47/0004B29C47/0021Y10T428/24802Y10T428/139C08L27/18B29C48/08B29C48/022
Inventor HUMPHREY, JOSEPH W.SKIBA, JEFFRY B.
Owner TRIVASCULAR2
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products