Stent

Inactive Publication Date: 2010-05-27
ICON MEDICAL CORP
View PDF104 Cites 84 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0021]In a further and/or alternative non-limiting aspect of the present invention, the one or more chemical agents on and/or in the stent, when used on the stent, can be released in a controlled manner so the area in question to be treated is provided with the desired dosage of chemical agent over a sustained period of time. As can be appreciated, controlled release of one or more chemical agents on the stent is not always required and/or desirable. As such, one or more of the chemical agents on and/or in the stent can be uncontrollably released from the stent during and/or after insertion of the stent in the treatment area. It can also be appreciated that one or more chemical agents on and/or in the stent can be controllably released from the stent and one or more chemical agents on and/or in the stent can be uncontrollably released from the stent. It can also be appreciated that one or more chemical agents on and/or in one region of the stent can be controllably released from the stent and one or more chemical agents on and/or in the stent can be uncontrollably released from another region on the stent. As such, the stent can be designed such that 1) all the chemical agent on and/or in the stent is controllably released, 2) some of the chemical agent on and/or in the stent is controllably released and some of the chemical agent on the stent is non-controllably released, or 3) none of the chemical agent on and/or in the stent is controllably released. The stent can also be designed such that the rate of release of the one or more chemical agents from the stent is the same or different. The stent can also be designed such that the rate of release of the one or more chemical agents from one or more regions on the stent is the same or different. Non-limiting arrangements that can be used to control the release of one or more chemical agent from the stent include a) at least partially coat one or more chemical agents with one or more polymers, b) at least partially incorporate and/or at least partially encapsulate one or more chemical agents into and/or with one or more polymers, and/or c) insert one or more chemical agents in pores, passageway, cavities, etc. in the stent and at least partially coat or cover such pores, passageway, cavities, etc. with one or more polymers. As can be appreciated, other or additional arrangements can be used to control the release of one or more chemical agent from the stent. The one or more polymers used to at least partially control the release of one or more chemical agent from the stent can be porous or non-porous. The one or more chemical agents can be inserted into and/or applied to one or more surface structures and/or micro-structures on the stent, and/or be used to at least partially form one or more surface structures and/or micro-structures on the stent. As such, the one or more chemical agents on the stent can be 1) coated on one or more surface regions of the stent, 2) inserted and/or impregnated in one or more surface structures and/or micro-structures, etc. of the stent, and/or 3) form at least a portion or be included in at least a portion of the structure of the stent. When the one or more chemical agents are coated on the stent, the one or more chemical agents can 1) be directly coated on one or more surfaces of the stent, 2) be mixed with one or more coating polymers or other coating materials and then at least partially coated on one or more surfaces of the stent, 3) be at least partially coated on the surface of another coating material that has been at least partially coated on the stent, and/or 4) be at least partially encapsulated between a) a surface or region of the stent and one or more other coating materials and/or b) two or more other coating materials. As can be appreciated, many other coating arrangements can be additionally or alternatively used. When the one or more chemical agents are inserted and/or impregnated in one or more internal structures, surface structures and/or micro-structures of the stent, 1) one or more other coating materials can be applied at least partially over the one or more internal structures, surface structures and/or micro-structures of the stent, and/or 2) one or more polymers can be combined with one or more chemical agents. As such, the one or more chemical agents can be 1) embedded in the structure of the stent; 2) positioned in one or more internal structures of the stent; 3) encapsulated between two polymer coatings; 4) encapsulated between the base structure and a polymer coating; 5) mixed in the base structure of the stent that includes at least one polymer coating; or 6) one or more combinations of 1, 2, 3, 4 and/or 5. In addition or alternatively, the one or more coating of the one or more polymers on the stent can include 1) one or more coatings of non-porous polymers; 2) one or more coatings of a combination of one or more porous polymers and one or more non-porous polymers; 3) one or more coating of porous polymer, or 4) one or more combinations of options 1, 2, and 3. As can be appreciated different chemical agents can be located in and/or between different polymer coating layers and/or on and/or the structure of the stent. As can also be appreciated, many other and/or additional coating combinations and/or configurations can be used. The concentration of one or more chemical agents, the type of polymer, the type and/or shape of internal structures in the stent and/or the coating thickness of one or more chemical agents can be used to control the release time, the release rate and/or the dosage amount of one or more chemical agents; however, other or additional combinations can be used. As such, the chemical agent and polymer system combination and location on the stent can be numerous. As can also be appreciated, one or more chemical agents can be deposited on the top surface of the stent to provide an initial uncontrolled burst effect of the one or more chemical agents prior to 1) the control release of the one or more chemical agents through one or more layers of polymer system that include one or more non-porous polymers and/or 2) the uncontrolled release of the one or more chemical agents through one or more layers of polymer system. The one or more chemical agents and/or polymers can be coated on the stent by a variety of mechanisms such as, but not limited to, spraying (e.g., atomizing spray techniques, etc.), dip coating, roll coating, sonication, brushing, plasma deposition, and/or depositing by vapor deposition. The thickness of each polymer layer and/or layer of chemical agent is generally at least about 0.01 μm and is generally less than about 150 μm. The one or more chemical agents on and/or in the device, when used on the device, can be released in a controlled manner so the area in question to be treated is provided with the desired dosage of chemical agent over a sustained period of time. As can be appreciated, controlled release of one or more chemical agents on the device is not always required and/or desirable. As such, one or more of the chemical agents on and/or in the device can be uncontrollably released from the device during and/or after insertion of the device in the treatment area. It can also be appreciated that one or more chemical agents on and/or in the device can be controllably released from the device and one or more chemical agents on and/or in the device can be uncontrollably released from the device. It can also be appreciated that one or more chemical agents on and/or in one region of the device can be controllably released from the device and one or more chemical agents on and/or in the device can be uncontrollably released from another region on the device. As such, the device can be designed such that 1) all the chemical agent on and/or in the device is controllably released, 2) some of the chemical agent on and/or in the device is controllably released and some of the chemical agent on the device is non-controllably released, or 3) none of the chemical agent on and/or in the device is controllably released. The device can also be designed such that the rate of release of the one or more chemical agents from the device is the same or different. The device can also be designed such that the rate of release of the one or more chemical agents from one or more regions on the device is the same or different. Non-limiting arrangements that can be used to control the release of one or more chemical agent from the device include a) at least partially coat one or more chemical agents with one or more polymers, b) at least partially incorporate and/or at least partially encapsulate one or more chemical agents into and/or with one or more polymers, c) insert one or more chemical agents in pores, passageway, cavities, etc. in the device and at least partially coat or cover such pores, passageway, cavities, etc. with one or more polymers, and/or incorporate one or more chemical agents in the one or more polymers that at least partially form the device. As can be appreciated, other or additional arrangements can be used to control the release of one or more chemical agent from the device. The one or more polymers used to at least partially control the release of one or more chemical agent from the device can be porous or non-porous. The one or more chemical agents can be inserted into and/or applied to one or more surface structures and/or micro-structures on the device, and/or be used

Problems solved by technology

These materials however have limited physical performance characteristics

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Stent
  • Stent
  • Stent

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0079]Referring now to the drawings wherein the showings are for the purpose of illustrating embodiments of the invention only and not for the purpose of limiting the same, FIGS. 1-10 disclose a stent in the form of a stent for use in a body passageway. The stent is particularly useful in the cardiovascular field; however, the stent can be used in other medical fields such as, but not limited to, orthopedic field, cardiology field, pulmonology field, urology field, nephrology field, gastroenterology field, gynecology field, otolaryngology field or other surgical fields. Additionally or alternatively, the stent is not limited to a stent, thus can be in the form of many other stents (e.g., a staple, an orthopedic implant, a valve, a vascular implant, a pacemaker, a spinal implant, a guide wire, nail, rod, screw, etc.).

[0080]The stent, when used for vascular applications, can be used to address various medical problems such as, but not limited to, restenosis, atherosclerosis, atherogen...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

An expandable stent for use within a body passageway. The stent includes at least two struts and a connector securing together said two struts. At least one of said struts includes an elbow section and an undulating section. The apex of at least one strut can include at least one a dimple, divot and/or slot.

Description

[0001]This application claims priority on PCT Application Serial No. PCT / US2007 / 016056 filed Jul. 13, 2007, which in turn claims priority on U.S. Patent Application Ser. No. 60 / 831,981 filed on Jul. 13, 2006, which are both incorporated herein.[0002]The invention relates generally to medical devices, and particularly to a stent for use in treating a body passageway.BACKGROUND OF THE INVENTION[0003]Medical treatment of various illnesses or diseases commonly includes the use of one or more medical devices. One type of medical device that is commonly used to repair various types of body passageways is an expandable stent. One purpose of a stent is to open a blocked or partially blocked body passageway. When a stent is used in a blood vessel, the stent is used to open the occluded vessel to achieve improved blood flow which is necessary to provide for the anatomical function of an organ. The procedure of opening a blocked or partially blocked body passageway commonly includes the use of...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): A61F2/82
CPCA61F2/915A61F2002/91533A61F2002/9155A61F2002/91558A61F2230/0013A61F2250/0036A61F2250/0067A61F2220/0008A61F2002/91583
Inventor PATEL, UDAYAN
Owner ICON MEDICAL CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products