Mark Reader Configured to Prioritize Images

a reader and image technology, applied in the field of mark or symbology readers, can solve the problems of large variation in the overall trigger-to-decode time, unsatisfactory both of these methods, and difficulty in detecting or decoding images within a limited number of images, so as to reduce the mean time to a successful decode and reduce the trigger-to-decode response time

Inactive Publication Date: 2014-05-01
COGNEX CORP
View PDF1 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0014]The present embodiments overcomes the disadvantages of the prior art by providing improved systems and methods for reducing the trigger-to-decode response time by prioritizing a plurality of images to be decoded based on feature attributes calculated from an image analysis. The feature attributes provide an indication of the likelihood of a successful decode. A reader that can attempt to decode the highest or a higher priority image(s) first and avoid decoding images that are less likely than other images to be successfully decoded. By prioritizing at least some of the images to identify at least one of the images likely to be decodable, the mean time to a successful decode is decreased for a wide range of applications, including variations in the mark, variations of lighting / illumination, and variations in the presentation of the mark, such as orientation and surface characteristics.

Problems solved by technology

A primary weakness for both fixed mount readers and handheld readers is the large variation in overall trigger-to-decode times when a variety of marks are present.
Both of these methods are not ideal when there are variations in the mark properties.
It is recognized that certain aspects of the mark to be read can make it difficult to detect or decode it within a limited number of images.
In such cases, the initial image acquisition settings may be inadequate and there may be a delay until a final, more-sufficient parameter settings are adjusted.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Mark Reader Configured to Prioritize Images
  • Mark Reader Configured to Prioritize Images
  • Mark Reader Configured to Prioritize Images

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0026]Referring to the drawings wherein like reference numerals correspond to similar elements throughout the views, and more specifically, referring to FIG. 2, the present embodiments are described in the context of an exemplary fixed mount mark reader system 200. The exemplary reader is provided with camera element 202 that is a conventional camera mounted on a fixed bracket 203. The camera element includes an image acquisition system 204, including a sensor 205, both shown in phantom, and is controlled to direct image data to a remote or an onboard embedded processor 206. This processor includes a software application 208 by which illumination is controlled, images are acquired and image data is interpreted into usable information derived from the marks (such as the depicted two-dimensional mark 210). Usable information includes, for example, alphanumeric strings, binary data, and binary data along with interpretation information, such as a flag to indicate the binary data is Kan...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

Systems and methods for use with a mark reader that reduce the trigger-to-decode response time by prioritizing images to be decoded based on the likelihood of a successful decode are provided. A reader attempts to decode a priority image(s) first to avoid attempting to decode images that are less likely than other images to be successfully decoded. Images are rated based on feature attributes, and then prioritized for decoding. Image feature attributes are correlated with parameter groups, and the parameter groups are prioritized for use in subsequent image acquisitions.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS[0001]Not applicable.STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT[0002]Not applicable.BACKGROUND OF THE INVENTION[0003]The present invention relates to the field of mark or symbology readers used to read marks (e.g., symbols, barcodes, text characters including alphanumeric, kanji, etc.) directly on objects, and more specifically to a reader that is configured to prioritize images for decoding to reduce the time for a successful decode.[0004]Mark or symbology reading (also commonly termed barcode scanning) entails the aiming of an image acquisition sensor (e.g., CMOS camera, CCD, etc.) or vision system (e.g., VSOC) contained within the reader at a location on an object that contains a mark, and acquiring an image of the mark. Marks are known and available in a variety of shapes and sizes, and are designed to contain data, such as a set of predetermined patterns that represent an ordered group of characters or shapes. The read...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): G06K9/46
CPCG06K9/46G06K7/10722G06K7/1465
Inventor NEGRO, JAMES A.KEATING, JOHN F.
Owner COGNEX CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products