Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Method for establishing secure public-key cryptography against quantum computing attacks

A technology of public key cryptography and quantum computing, which is applied in the fields of public key encryption technology, identity authentication technology, and digital signature technology, and can solve problems such as hidden dangers of public key cryptography.

Active Publication Date: 2020-10-16
SHENZHEN UNIV
View PDF3 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0004] In order to solve the problem of hidden dangers based on the security of existing public key cryptography, the purpose of the present invention is to introduce the structure of the Mihailova subgroup of the braided group again, and take elements in these subgroups to generate private keys, and use its unsolvability To establish public key cryptography, digital signature and identity authentication methods that are resistant to various attacks

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method for establishing secure public-key cryptography against quantum computing attacks
  • Method for establishing secure public-key cryptography against quantum computing attacks
  • Method for establishing secure public-key cryptography against quantum computing attacks

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0044] A public key cryptographic protocol against quantum computing attacks of the present invention will be further described in detail below in conjunction with embodiments.

[0045] 1. Establish a platform for public key cryptographic protocols

[0046] The platform for establishing all public-key cryptographic protocols is an infinite non-abelian group G and two subgroups A and B of G, so that for any a∈A and any b∈B, the equation ab=ba holds. In addition, due to the needs of encoding and key generation, G must also meet the following conditions:

[0047] 1) Words representing elements of G on the generator set of G have a computable normal form;

[0048] 2) G is at least exponential growth (exponential growth), that is, the number of elements in G whose word length is a positive integer n is bounded by an exponential function about n;

[0049] 3) The product operation and inversion operation based on the normal form of the group are feasible and computable.

[0050] F...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The present invention relates to the field of information safety, and discloses a method for establishing public key cryptogram against quantum computing attack. The method comprises the following steps of: (11) a protocol first party selects a braid group Bn with an index n of being not small than 7, and selects a subgroup A generated by employing a1, a2, ..., ak in the Bn and a subgroup B generated by employing b1, b2, ..., bm in the Bn; (12) the protocol first party selects [Theta], wherein Bn maps to {0, 1}k is an Hash function from Bn to plaintext space {0, 1}k collision resistance; (13)the protocol first party selects an element x as a private key, wherein x=x(a1, a2, ..., ak) belonging to A, and selects (Bn, A, B, [Theta], X-1b1x, x-1b2x, ..., x-1bmx) as a public key; (14) a protocol second party selects an element y, wherein y=y(b1, b2, ..., bm) belonging to B, calculates KB=(y< 1>y(x< 1>b1x, x< 1>b2x, ..., x< 1>bmx))< 1>=(y< 1>x< 1>yx)< 1>=x< 1>y< 1>xy, performs encryption calculation of a plaintext p to obtain a ciphertext (img file='DDA0001531187730000011. TIF' wi='286' he='71' / ) and sends t to the protocol first party; and (15) the protocol first party calculates KA=x<1>x(y< 1>a1y,y< 1>a2y, ...,y< 1>aky)=x< 1>y< 1>xy, performs decryption calculation to obtain a plaintext (img file='DDA0001531187730000012. TIF' wi='283' he='70' / )(img file='DDA0001531187730000013. TIF' wi='510' he='63' / ). The method provided by the invention can resist all the known attacks comprising quantum computing attack.

Description

technical field [0001] The invention relates to the field of information security, in particular to a public key encryption technology, a digital signature technology and an identity authentication technology for establishing resistance to various known attacks including quantum computing attacks. Background technique [0002] In the classical public-key cryptography algorithm, as a practical computationally difficult problem for security, its intractability will be greatly reduced with the improvement of computer performance. In particular, the famous Shor quantum algorithm proposed by Shor in 1997 will perform the factorization of large integers and the calculation of discrete logarithms in polynomial time, which means that once the quantum computer is realized, it will be based on RSA, ECC, E1Gamal Algorithms and other established public key cryptographic protocols will no longer be safe. Aiming at the conjugation problem of the elements of the braid group proposed by Ko...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(China)
IPC IPC(8): H04L9/00H04L9/08H04L29/06
CPCH04L9/002H04L9/0825H04L9/0852H04L63/0428H04L63/06H04L63/08H04L63/1441
Inventor 王晓峰王威鉴徐黎王利元
Owner SHENZHEN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products