Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Multi-region variable-scale 3D-HOF based surveillance video anomaly detection method

A 3D-HOF and surveillance video technology, applied in the field of video analysis, can solve problems such as false detection, missed detection, and failure to consider the relationship between the whole and part of the video

Active Publication Date: 2018-04-27
BEIJING UNIV OF TECH
View PDF2 Cites 13 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0005] The problem to be solved by the present invention is: in the abnormal detection technology of surveillance video, if the problem of perspective deformation is not considered, the abnormal motion in the distance will be misjudged as the normal motion in the vicinity, resulting in missed detection; while the existing solution to the problem of perspective deformation The anomaly detection method does not consider the relationship between the whole and the part in the video, which will lead to false detection

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Multi-region variable-scale 3D-HOF based surveillance video anomaly detection method
  • Multi-region variable-scale 3D-HOF based surveillance video anomaly detection method
  • Multi-region variable-scale 3D-HOF based surveillance video anomaly detection method

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0047] The present invention provides a surveillance video anomaly detection method based on multi-area variable-scale 3D-HOF. The method takes the surveillance video as input, and extracts the dense optical flow of each frame image in the video, and then divides the video into blocks with a fixed size , and according to the similarity of optical flow amplitude distribution in each block, the video is divided into multiple regions, and then, in each partition, the detection features composed of variable-scale 3D-HOF and optical flow direction information entropy of each detection unit are respectively extracted, Finally, the sparse combination learning algorithm is used to learn the sparse combination set in each partition, and the reconstruction error is used to judge whether each detection unit is abnormal, and the corresponding sparse combination set is updated online with normal data. The invention is suitable for abnormal detection of surveillance video, has good robustnes...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention discloses a multi-region variable-scale 3D-HOF based surveillance video anomaly detection method, which comprises the steps of firstly acquiring surveillance video to serve as input, performing partition processing on the video, then extracting variable-scale 3D-HOF features and optical flow direction information entropy in each sub-region, combining the variable-scale 3D-HOF features and the optical flow direction information entropy into final detection features, finally learning an initial sparse combination set in each sub-region by using a sparse combination learning algorithm, judging whether the new data is abnormal or not through a reconstruction error, and updating the sparse combination set online by using normal data. The application of the invention not only solves a problem of perspective distortion existing in the surveillance video, but also makes full use of the difference of motion information in different optical flow amplitude intervals, and can acquiremore accurate moving speed information. The method disclosed by the invention is applicable to anomaly detection for the surveillance video, low in calculation complexity, accurate in detection result and good in algorithm robustness. The method has extensive applications in the technical field of video analysis.

Description

technical field [0001] The invention belongs to the technical field of video analysis, and in particular relates to a monitoring video anomaly detection method based on multi-area variable-scale 3D-HOF, which is used for detecting abnormal objects and motion patterns in the monitoring video. Background technique [0002] Surveillance video anomaly detection is an important research direction in the field of video analysis technology. It has broad application prospects in riot detection in public places, fare evasion detection at subway station entrances, fire warning, and intrusion monitoring. [0003] At present, most anomaly detection methods learn the model of the normal appearance and motion pattern of the object from the training video, and perform anomaly detection based on the established model, but rarely consider the position information of the object in the surveillance video on the appearance and motion pattern. Impact. Due to the perspective distortion in the vi...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(China)
IPC IPC(8): G06K9/00G06K9/46G06K9/62
CPCG06V20/42G06V10/507G06F18/23213
Inventor 付利华崔鑫鑫丁浩刚李灿灿
Owner BEIJING UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products