Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

AGV (Automated Guided Vehicle) route planning method and system based on ant colony algorithm and multi-intelligent agent Q learning

An ant colony algorithm and multi-agent technology, applied in the control/regulation system, two-dimensional position/channel control, vehicle position/route/height control, etc., can solve the problems of dimension disaster, dimension growth, etc., to improve Convergence speed, improving learning speed and convergence speed, optimizing the effect of global search ability

Active Publication Date: 2018-11-09
YTO EXPRESS CO LTD
View PDF9 Cites 49 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

Among them, the Q-learning algorithm, as a reinforcement learning algorithm, learns from the environment state to the action mapping. The agent adopts the optimal strategy according to the maximum reward value. The principle of the Q-learning algorithm is easy to understand, easy to combine with reality, and suitable for use in unknown environments. AGV path planning research, but there are more than one agent in a multi-agent system, so when applying Q-learning, it needs to be different from single-agent Q-learning. Multi-agents need to consider the decisions and influences of other agents. When the environment is complex Unknown, when the number of agents is too large, the dimension of the entire state space will increase rapidly, resulting in the disaster of dimensionality

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • AGV (Automated Guided Vehicle) route planning method and system based on ant colony algorithm and multi-intelligent agent Q learning
  • AGV (Automated Guided Vehicle) route planning method and system based on ant colony algorithm and multi-intelligent agent Q learning
  • AGV (Automated Guided Vehicle) route planning method and system based on ant colony algorithm and multi-intelligent agent Q learning

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0057] The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments. Note that the aspects described below in conjunction with the drawings and specific embodiments are only exemplary, and should not be construed as limiting the protection scope of the present invention.

[0058] figure 1 It shows the flow of an embodiment of the AGV path planning method based on ant colony algorithm and multi-agent Q learning of the present invention. See figure 1 , the following is a detailed description of the implementation steps of the AGV path planning method of this embodiment.

[0059] Step S1: Based on the known static environment, use the grid method to model the AGV operation environment on a two-dimensional plane, and initialize the grid information.

[0060] The processing of this step includes corresponding to the two-dimensional coordinates of each small grid, marking the grid where the static obstacle is locat...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention discloses an AGV (Automated Guided Vehicle) route planning method and system based on an ant colony algorithm and multi-intelligent agent Q learning, improving the global optimization ability, realizing a case that an AGV learns how to avoid an obstacle in the interaction process by introducing the multi-intelligent agent Q learning into a route planning research of the AGV, and canplay independence and learning capacity of the AGV better. The AGV route planning method and system is characterized in that according to a static environment, carrying out modeling on an AGV operation environment by utilizing a grid method, and setting an initial point and a target point; according to coordinates of the initial point and the target point of the AGV, generating a global optimal route by the ant colony algorithm; enabling the AGV to move towards the target point according to the global optimal route, and when detecting that a dynamic obstacle exists in a minimum distance, carrying out selection of an obstacle avoidance strategy by an environment state corresponding to the multi-intelligent agent Q learning so as to take a corresponding obstacle avoidance action, and after ending obstacle avoidance, returning to an original route to continuously move.

Description

technical field [0001] The invention relates to an AGV path planning technology, in particular to an AGV (Automated Guided Vehicle) path planning method and system based on an improved ant colony algorithm and optimized multi-agent Q learning in a dynamic environment. Background technique [0002] Path planning is an important issue in AGV planning and scheduling. As more and more AGVs are put into use, many new problems have been brought about, such as the establishment of dynamically changing environmental models; the path planning of multiple AGVs and the problem of obstacle avoidance. ; The problem of the learning and intelligence of the multi-AGV system. The existing AGV path planning methods include swarm intelligent bionic algorithm, A*, D* algorithm, etc. Such a single global planning method often cannot achieve the global optimum, and requires high prior knowledge of the environment and requires a large When encountering a complex and dynamic environment, the effic...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): G05D1/02
CPCG05D1/0221
Inventor 英春谭书华李娜雷蕾孙知信孙哲
Owner YTO EXPRESS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products