Multi-core processor control method
a control method and processor technology, applied in error detection/correction, memory address allocation/allocation/relocation, instruments, etc., can solve problems such as performance improvement, communication overhead between server nodes, and complexity of server hardware, so as to shorten system boot time and improve yield
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
first embodiment
[0072]FIG. 7 shows the first embodiment of the present invention with a 2CMP multi-core processor with 2 core portions.
[0073] Processor 701 is a 2-core multi-core processor comprised of CORE-0 block 411, CORE-1 block 412, and CMP common block 410. Also, the JTAG controller includes TAP controller 413, decoder for load controller 715, load controller 716, load register 717, decoder for flag controller 719, flag controller 720, core selection flag register 721 comprised of CORE-0 flag register 722 and CORE-1 flag register 723, CORE-0 AND logic gate 724, and CORE-1 AND logic gate 725 each on the CMP common block side, CORE-0 register controller 418 and CORE-0 setup register 419 each on the CORE-0 block side, and CORE-1 register controller 420 and CORE-1 setup register 421 each on the CORE-1 block side.
[0074] First, JTAG command-0 718 issued from TAP controller 413 is decoded by decoder for flag controller 719, and through those decoded results, flag controller 720 sets data to CORE-0...
second embodiment
[0079]FIG. 8 shows the second embodiment of the present invention with a multi-core processor of nCMP with n number of core portions (n≧3).
[0080] Processor 801 is a multi-core processor of n cores comprised of CORE-0 block 811, CORE-1 block 812, . . . , CORE-n block 813, and CMP common block 410. Also, the JTAG controller includes TAP controller 413, decoder for load controller 715, load controller 716, load register 717, decoder for flag controller 719, flag controller 720, core selection flag register 821 comprised of CORE-0 flag register 822, CORE-1 flag register 823, . . . , and CORE-n flag register 824, CORE-0 AND logic gate 825, CORE-1 AND logic gate 826, . . . , and CORE-n AND logic gate 827 each on the CMP common block side, CORE-0 register controller 814 and CORE-0 setup register 815 each on the CORE-0 block side, CORE-1 register controller 816 and CORE-1 setup register 817, . . . , each on the CORE-1 block side, and CORE-n register controller 818 and CORE-n setup register...
third embodiment
[0086]FIG. 9 shows the third embodiment of the present invention with a 2CMP multi-core processor with 2 core portions. The point of difference with the first embodiment indicated in FIG. 7 is that sense controls, in addition to load controls, for the setup registers of both cores are possible. Thus, since the load controls are the same as the first embodiment as indicated in FIG. 7, the load control description shall be omitted, and only the sense controls shall be explained.
[0087] Processor 901 is a 2-core multi-core processor comprised of CORE-0 block 411, CORE-1 block 412, and CMP common block 410. Also, the JTAG controller includes TAP controller 413, decoder for load / sense controller 915, load / sense controller 916, load / sense register 917, decoder for flag controller 719, flag controller 720, core selection flag register 721 comprised of CORE-0 flag register 722 and CORE-1 flag register 723, AND logic gate for CORE-0 load controls 924, AND logic gate for CORE-0 sense controls...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com