Compositions and methods for effecting the levels of high density lipoprotein (HDL) cholesterol and apolipoprotein Al, very low density lipoprotein (VLDL) cholesterol and low density lipoprotein (LDL) cholesterol

a technology of lipoprotein and cholesterol, which is applied in the field of composition and methods for reducing the level of ldl cholesterol and hdl cholesterol and apolipoprotein al, and very low density lipoprotein (vldl) cholesterol and low density lipoprotein (ldl) cholesterol, can solve the problems of increased risk of atherosclerosis, so as to enhance the enzymatic activity of lipg

Inactive Publication Date: 2006-04-27
AVENTIS PHARMA INC
View PDF33 Cites 3 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0031] Still another aspect of the present invention is the provision of a composition for lowering the enzymatic activity of the LIPG polypeptide in a patient comprising an intracellular binding protein, including, for example, an expression vector which includes a DNA sequence encoding said intracellular binding protein. Examples of preferred expression vectors are retroviral vectors, adenoviral vectors, adeno-associated viral vectors, herpesviral vectors, and naked DNA vectors.
[0043] Still another aspect of the present invention is the provision of a method for determining whether a test compound can enhance the enzymatic reaction between the LIPG polypeptide and LDL cholesterol comprising: (A) comparing the level of LDL cholesterol in a first sample comprising: (1) LDL cholesterol, (2) LIPG polypeptide, and (3) the test compound with the level of LDL cholesterol in another sample comprising: (4) LDL cholesterol, and (5) LIPG polypeptide; and (B) identifying whether or not the test compound is effective in enhancing the enzymatic reaction between the LIPG polypeptide and LDL cholesterol by observing whether or not the first sample has a lower level of LDL cholesterol than that of said other sample.

Problems solved by technology

These lesions can lead to serious cardiovascular pathologies such as infarction, sudden death, cardiac insufficiency, and stroke.
High levels of circulating LDL and VLDL cholesterol are associated with increased risk of atherosclerosis.
However, current therapies do not adequately reduce LDL cholesterol levels in all persons.
Current therapies do not have as much effect in reducing VLDL cholesterol as LDL cholesterol.
Additionally, a high local level of lipase activity may result in cytotoxic levels of fatty acids and lysophosphatidylcholine being produced in precursors of atherosclerotic lesions.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Compositions and methods for effecting the levels of high density lipoprotein (HDL) cholesterol and apolipoprotein Al, very low density lipoprotein (VLDL) cholesterol and low density lipoprotein (LDL) cholesterol
  • Compositions and methods for effecting the levels of high density lipoprotein (HDL) cholesterol and apolipoprotein Al, very low density lipoprotein (VLDL) cholesterol and low density lipoprotein (LDL) cholesterol
  • Compositions and methods for effecting the levels of high density lipoprotein (HDL) cholesterol and apolipoprotein Al, very low density lipoprotein (VLDL) cholesterol and low density lipoprotein (LDL) cholesterol

Examples

Experimental program
Comparison scheme
Effect test

example 1

Identification of a Differentially Expressed cDNA

[0219] RNA Preparation

[0220] Human monocytic THP-1 cells (Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H. Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Anal. Biochem. 150, 76-85) were cultured in RPMI-1640 medium (GIBCO) with 25 mM HEPES, 10% fetal bovine serum, 100 units / ml penicillin G sodium and 100 units / ml streptomycin sulfate. Cells were plated onto 15 cm tissue culture dishes at 1.5×107 cells / plate, and treated with 40 ng / ml phorbol 12-myristate 13-acetate (Sigma) for 48 hours to induce differentiation of the cells. Human low density lipoproteins (LDL) were purchased from Calbiochem, and were dialyzed exhaustively versus PBS at 4° C. The LDL was then diluted to 500 μg / ml and dialyzed versus 5 μM CuSO4 in PBS at 37° C. for 16 hours. To stop oxidation, the LDL was dialyzed exhaustively versus 150 mM NaCl, 0.3 mM EDTA, then filter sterilized. Protein concentra...

example 2

Cloning and Chromosomal Localization of the LIPG Gene

[0228] cDNA library screening

[0229] A human placental cDNA library (Oligo dT and random primed, Cat #5014b, Lot #52033) was obtained from Clontech (Palo Alto, Calif.). A radiolabeled probe was created by excising the insert of a plasmid containing the 5′ RACE reaction PCR product described above. The probe was radiolabeled using the random priming technique: the DNA fragment (50-100 ng) was incubated with 1 μg of random hexamers (Gibco) at 95° C. for 10 minutes followed by 1 minute on ice. At room temperature the following were added: 3 μl 10× Klenow buffer (100 mM Tris-HCl pH 7.5, 50 mM MgCL2, 57 mM dithiothreitol; New England Biolabs), 3 μl 0.5 mM dATP, dGTP, dTTP), 100 μCi α-32PdCTP (3000 Ci / mmol, New England Nuclear), and 1 μl Klenow fragment-of DNA polymerase I (5 units, Gibco). The reaction was incubated for 2-3 hours at room temperature and the reaction was then stopped by increasing the volume to 100 μl with TE pH 8.0 an...

example 3

LIPG RNA Analysis

[0236] Expression of LIPG RNA in THP-1 cells

[0237] Analysis of the mRNA from which the cDNA was derived was performed by northern analysis of THP-1 RNA. RNA from these cells was prepared as described above. The mRNA was purified from the total RNA through the use of a poly-dT-magnetic bead system (Polyattract system, Promega). Three micrograms of poly (A)-containing mRNA was electrophoresed on a 1% agarose-formaldehyde gel. The gel was washed for 30 minutes in dH2O. RNAs were vacuum transferred to a nylon membrane using alkaline transfer buffer (3M NaCl, 8 mM NaOH, 2 mM sarkosyl). After transfer, the blot was neutralized by incubation for 5 minutes in 200 mM phosphate buffer pH 6.8. The RNA was crosslinked to the membrane using an ultraviolet crosslinker apparatus (Stratagene).

[0238] A probe was made by excising the insert of a plasmid containing the 5′ RACE reaction PCR product described above. The probe was radiolabeled using the random priming technique descri...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
densityaaaaaaaaaa
pHaaaaaaaaaa
temperatureaaaaaaaaaa
Login to view more

Abstract

Compositions and methods for raising the level of HDL cholesterol and apolipoprotein AI in a patient and for lowering the levels of VLDL cholesterol and LDL cholesterol in a patient, including compositions and methods which effect the expression of a gene, LIPG, which encodes a lipase enzyme that is a member of the triacylglycerol lipase family or which effect the enzymatic activity of the enzyme.

Description

[0001] This application is a continuation-in-part of U.S. application Ser. No. 08 / 985,492, filed Dec. 5, 1997, which claims the benefit of provisional applications under 35 U.S.C. § 119(e), 60 / 032,254 and 601032,783, both of which were filed Dec. 6, 1996, the disclosures of which are incorporated herein by reference in their entirety.FIELD OF THE INVENTION [0002] This invention relates to methods and compositions for increasing the level of high density lipoprotein (HDL) cholesterol and apolipoprotein AI in a patient and to methods and compositions for lowering the levels of very low density lipoprotein (VLDL) cholesterol, and low density lipoprotein (LDL) cholesterol in a patient. The invention includes within its scope methods and compositions which lower the expression of, or inhibit the activity of, a gene, LIPG, which encodes a lipase enzyme that lowers the levels of HDL cholesterol and apolipoprotein AI. The invention additionally includes within its scope methods and composit...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): C12Q1/68A61K9/127A61K48/00C12N15/86C12N15/88
CPCC12N9/18C12N9/20G01N33/573G01N2333/918
Inventor JAYE, MICHAELDOAN, KIM-ANHKRAWIEC, JOHNLYNCH, KEVINAMIN, DILIPSOUTH, VICTORIAMARCHADIER, DAWNMAUGEAIS, CYRILLERADER, DANIEL
Owner AVENTIS PHARMA INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products