Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Insertion device for intraocular lens

a technology for insertion devices and ocular lenses, which is applied in the field of insertion devices, can solve the problems of affecting the operation of the operator or the assistant, affecting the operation of the operator, and affecting the operation of the ocular lens, and achieves the effect of preventing liquid leakag

Inactive Publication Date: 2007-11-22
CANON STAAR
View PDF0 Cites 92 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0012]The present invention provides an insertion device for an intraocular lens that can prevent leakage of a liquid in the device, and can house and store a lens as well as the liquid.
[0013]The present invention also provides an insertion device for an intraocular lens that can restrict the amount of leakage outside an eye of a liquid introduced into the eye through an insertion cylinder.
[0014]The present invention further provides an insertion device for an intraocular lens that can prevent inclination of a pushing shaft with respect to a main body, and can properly push out a lens.

Problems solved by technology

However, when the main body of the insertion device is constituted by a plurality of components assembled to each other, for example, when a lens setting portion in the main body has a divided structure or an openable and closable structure, a liquid such as a viscoelastic material or physiologic saline leaks from a gap created at the assembled portion.
The leaking liquid makes the insertion device slippery or soils the periphery of the device.
In the case of a conventional operation, a liquid is introduced into the insertion device immediately before the operation, which takes time and places a heavy burden on an operator or an assistant.
This cannot prevent the pushing shaft from being inclined radially with respect to the main body around a contact position between the elastic member and the main body in the operation of the pushing shaft.
However, if the pushing shaft is inclined with respect to the main body, the front end of the pushing shaft is not precisely brought into contact with the lens placed in the main body, which may prevent the lens from being properly pushed out.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Insertion device for intraocular lens
  • Insertion device for intraocular lens
  • Insertion device for intraocular lens

Examples

Experimental program
Comparison scheme
Effect test

experiment 1

[0119] First, as shown in FIG. 12 (the upperside shows a top view and the lowerside shows a side view), a device 19 for supplying a liquid such as physiologic saline was connected to an insertion device 2′ via a tube 18 and an experiment was conducted. At this time, the insertion device 21 did not have a cover ring 13 or a configuration corresponding thereto. A flow path through which the liquid passes was provided in a pushing shaft 16′, and the tube 18 was connected to the pushing shaft 16′.

[0120]When the liquid was continuously introduced into the eyeball from the liquid supply device 19 via the insertion device 2′ (a nozzle portion 12c), it was confirmed that ocular tension increased and the anterior chamber was filled with the liquid, and the posterior capsule of the crystalline lens moved toward the vitreous body (the anterior chamber was inflated). It was found that when the liquid of a predetermined flow rate can be continuously supplied from the liquid supply device 19 to t...

experiment 2

[0121] An experiment was conducted using an insertion device 2 in which a liquid of 25 ml was previously introduced into a main body 12 as shown in FIG. 13. In this experiment, a nozzle portion 12c did not have a cover ring 13 or a configuration corresponding thereto. In this case, even if a pushing shaft 16 was pushed to introduce most of the liquid in the main body 12 into the eye, ocular tension hardly increased from ocular tension when an incision was formed, and the posterior capsule of the crystalline lens did not move toward the vitreous body. The reason that the ocular tension did not increase was studied and found. It was because the incision was linearly formed by a knife, and the three-dimensional nozzle portion 12c was inserted into the incision to form a gap 20 in FIG. 11, and a liquid L leaked from the gap 20 as shown in FIG. 14.

experiment 3

[0122] A cover ring 13 was mounted to the nozzle portion 12c of the insertion device 2 used in Experiment 2, and the cover ring 13 was brought into tight contact with a portion near the incision 15a in the eyeball 15 as shown in FIG. 15, and an experiment similar to Experiment 2 was conducted. In this case, ocular tension increased and the posterior capsule of the crystalline lens moved toward the vitreous body. It was confirmed that this was because a gap 20 is created outside the nozzle portion 12c in the incision 15a, but the cover ring 13 is brought into tight contact with around the incision 15a in the eyeball 15, and thus even if the liquid flows out of the gap 20, a seal by the cover ring 13 prevents the liquid from leaking outside. In particular, the cover ring 13 has a circular section, and thus the cover ring 13 is brought into ring-shaped line contact around the incision 15a in the eyeball 15. Thus, it can be considered that a sealing effect was able to be obtained more e...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

An insertion device for an intraocular lens is disclosed which can prevent leakage of a liquid in the device and can house and store a lens as well as the liquid. The insertion device includes a main body including a lens housing portion that houses the lens and an insertion cylindrical portion that feeds the lens into an eye, a pushing shaft that moves the lens from the lens housing portion in the front end direction to push out the lens into the eye through the insertion cylindrical portion, and a lens holding member that holds the lens, and is placed in the lens housing portion. The lens housing portion has a shape that receives insertion of the lens holding member from the rear.

Description

BACKGROUND OF THE INVENTION[0001]The present invention relates to an insertion device for inserting into an eye an intraocular lens that is inserted instead of a crystalline lens after the crystalline lens is extracted because of cataract or inserted into an eye in order to cure abnormal refraction.[0002]In current operations for cataract, the central portion of the anterior capsule of an eyeball is ablated, a clouded crystalline lens is removed by an ultrasonic suction apparatus, and then an artificial intraocular lens (hereinafter simply referred to as a lens) is placed in the position of the removed clouded crystalline lens. When placing the lens in the eyeball, an operation method for inserting the lens into the eyeball through a small incision by using the flexibility of the lens and thereby deforming the lens, e.g. folding the lens into a small shape is the mainstream.[0003]In the case of an operation, an insertion device is frequently used which deforms a lens set in a main b...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): A61F2/16A61F9/00
CPCA61F2/1662A61F2/1664
Inventor KOBAYASHI, KENICHITOYOMANE, SHINOBU
Owner CANON STAAR
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products