Method and Apparatus for Performing Formal Verification of Polynomial Datapath
a polynomial data and verification method technology, applied in the direction of instruments, specific program execution arrangements, program control, etc., can solve the problems of formal verification, reducing the confidence gained from simulation alone, and giving absolute confiden
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
example 1
[0063]
t0[8:0]=c[7:0]+1
t1[15:0]=b[7:0]−t0
t2[15:0]=d[7:0]<
t3[15:0]=a[7:0]*t1
Y[15:0]=t3+t2 Design A
t0[8:0]=c[7:0]+1
t1[15:0]=d[7:0]<
t2[15:0]=a[7:0]*b[7:0]
t3[15:0]=a[7:0]*t0
Y[15:0]=t2−t3+t1+2*d[7:0] Design B
t0[15:0]=c+1
t1[15:0]=b−t0
t2[15:0]=d<
t3[15:0]=a*t1
Y[15:0]=t3+t2 Design A′
t0[15:0]=c+1
t1[15:0]=d<<c
t2[15:0]=a*b
t3[15:0]=a*t0
Y[15:0]=t2−t3+t1+2*d Design B′
[0064]The DFG of A′ can be found in FIG. 1. The strictly polynomial inputs are a, b and d. In this case n=16, so SF(216)=min(k:16≦k−Hamm(k))=18; λj=min(8,ceil(log2(SF(216))))=5
t0[15:0]=c[7:0]+1
t1[15:0]=b[4:0]−t0
t2[15:0]=d[4:0]<
t3[15:0]=a[4:0]*t1
Y[15:0]=t3+t2 Design A″
t0[15:0]=c[7:0]+1
t1[15:0]=d[4:0]<
t2[15:0]=a[4:0]*b[4:0]
t3[15:0]=a[4:0]*t0
Y[15:0]=t2−t3+t1+2*d[4:0] Design B″
[0065]Formally verifying A″ against B″ is a much simpler verification than A against B.
[0066]Note that in general SF(2n) is of order n, thus reducing exponential complexity to linear complexity.
example 2
[0067]The following is a typical example in the context of an integer arithmetic logic unit.
t0[33:0]=a[1′5:0]*b[15:0]+c[15:0]t1[33:0]=-a[1′5:0]*b[15:0]+c[15:0]t2[33:0]=a[1′5:0]*b[15:0]-c[15:0]t3[33:0]=-a[1′5:0]*b[15:0]-c[15:0]t4[33:0]=a[1′5:0]*b[15:0]t5[33:0]=-a[1′5:0]*b[15:0]t6[33:0]=c[15:0]t7[33:0]=-c[15:0]DesignA:Y[33:0]=(s==0)?t0:(s==1)?t1:(s==2)?t2:(s==3)?t3:(s==4)?t4:(s==5)?t5:(s==6)?t6:t7DesignB:t0[33:0]=(s>5)?0:b[15:0]t1[33:0]=(s<4)?c[15:0]:(s[1]==1)?c[15:0]:0t3[33:0]=(s[2]⊕s[1]⊕s[0]==1)?t1_:t1t4[33:0]=a[15:0]*t0+t3+(s[2]⊕s[1]⊕s[0])-s[0]Y[33:0]=s[0]?t4_:t4DesignA′=DesignA:DesignB′=DesignBByapplyingAlgorithm1thestrictlypolynomialinputsarea,bandc.Inthiscasen=34,soSF(234)=min(k:34≤k-Hamm(k))=36λj=min(16,ceil(log2(SF(234))))=6
5 Polynomial Synthesis Via Formal Verification
[0068]The above methodology can improve or optimize verification of polynomial datapath design. In practical terms, when used in IC design verification can be implemented using standard synthesis tools. A ...
PUM
Login to View More Abstract
Description
Claims
Application Information
Login to View More - R&D
- Intellectual Property
- Life Sciences
- Materials
- Tech Scout
- Unparalleled Data Quality
- Higher Quality Content
- 60% Fewer Hallucinations
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2025 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com



