Tubular barrel-shaped flashlight having rotatable switching assembly and focusing and defocusing capability

Inactive Publication Date: 2008-03-25
MAG INSTR INC
View PDF102 Cites 9 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0008]It is an objective of the present invention to provided an improved flashlight having improved switching and focusing capabilities.
[0012]In accordance with another embodiment of the present invention, the head assembly includes a hyperbolic reflector to increase the amount of light reflected by flashlight when a light source is positioned within the reflector. Preferably, the hyperbolic reflector has an eccentricity value of no less than about 1.01 and no more than about 1.25. Preferably, the hyperbolic reflector has a vertex curvature value of no less than about 2.0 and no more than about 7.0. In one arrangement, the hyperbolic reflector has an eccentricity value of about 1.04 and a vertex curvature of about 3.3.
[0014]It is another objective of the present invention to provide a flashlight with an improved electrical connection between the batteries and the light source. In accordance with another embodiment of the present invention, the flashlight includes electrode connections which substantially reduce the likelihood that electrical energy will be conducted from batteries which are improperly aligned within the flashlight. In this regard, the electrode connection intended to contact the negative pole of the battery includes a non-conductive portion at the center of the electrode connection and a conductive portion at the perimeter of the electrode connection. As such, in the circumstance wherein a battery is inserted into the flashlight with the positive pole facing the electrode connection, the positive pole will only contact the non-conductive portion, and not the conductive portion, of the electrode connection. Additionally, the electrode connection intended to contact the positive pole of the battery includes a conductive spring having a nonconductive coating. As such, in the circumstance wherein a battery is inserted into the flashlight with the negative pole facing the electrode connection, the negative pole only will contact the nonconductive coated portion.
[0016]It is another objective of the present invention to provide a flashlight capable of maintaining a spare lamp bulb in close proximity to the flashlight's light bulb thus providing for the efficient and easy replacement of the lamp bulb when needed. In accordance with one embodiment of the present invention, the flashlight includes a lamp holder assembly which includes a notch for receiving and holding a spare lamp. As such, a spare lamp is easily accessible by simply removing the head assembly from the chamber and all that is required to replace the lamp bulb, is removal of the lamp bulb in the lamp socket, removing the spare lamp, and inserting the spare lamp into the lamp socket. Preferably, the lamp holder assembly further includes a fluorescent coating or additive which illuminates light in otherwise dark conditions, thereby facilitating lamp bulb replacement in less than desirable light conditions.

Problems solved by technology

However, when replacing multiple batteries in a flashlight, the possibility arises that a user may improperly position the batteries in a nonseries arrangement.
For example, a user may improperly align the new batteries such that the positive poles of the batteries face each other, or may comingle the old batteries with the new batteries and misalign a new battery with an old battery.
Misaligning the batteries may have undesired consequences, for example explosion causing physical injury, to a user of the flashlight.
As such, when batteries are contained within the flashlight's battery chamber, the possibility arises that hydrogen gas emitted by the batteries may become trapped within the flashlight.
In some circumstances, a defective battery will emit high quantities of hydrogen gas.
As a consequence, hydrogen gas may accumulate within the flashlight, thus raising the possibility of undesired consequences to a user of the flashlight, for example explosion causing physical injury.
Replacing a burned out bulb with a bulb positioned on the end cap is difficult, especially in low or no light conditions.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Tubular barrel-shaped flashlight having rotatable switching assembly and focusing and defocusing capability
  • Tubular barrel-shaped flashlight having rotatable switching assembly and focusing and defocusing capability
  • Tubular barrel-shaped flashlight having rotatable switching assembly and focusing and defocusing capability

Examples

Experimental program
Comparison scheme
Effect test

first embodiment

[0057]The lamp holder assembly 50 includes two embodiments. In either embodiment, the lamp holder assembly 50 is positioned at the second end 220 of the chamber 20. In the first embodiment, the lamp holder assembly 50 does not move inside the second end 220 of the chamber 20 when the flashlight 10 is turned “off” or “on.” In this regard and referring to FIGS. 8A and 8B, the lamp holder assembly 50 includes a lamp holder 510, a conductive spring 520, a switch lever 530, a second lever 540, a switch spring 550, a switch contact 560, a second spring 570, a spring holder 580, a conductive strip 590 and a strip support 592. The spring holder 580 includes a spring tab 582, first tab 584, second tab 586, and a first conductive contact 588. Preferably, the spring holder 580 includes a notch 589 wherein a hydrogen catalyst can be placed to absorb hydrogen gas emitted by the batteries 60, 62. As shown in FIG. 10, when assembled to the chamber 20, the lamp holder assembly 50 does not extend be...

second embodiment

[0068]As indicated above and with reference to FIGS. 16-27, the lamp holder assembly 50 includes a second embodiment, the lamp holder assembly 500, which moves inside the second end 220 of the chamber 20 when the flashlight 10 is turned “off” or “on.” Referencing FIG. 20, the lamp holder assembly 500 includes a lamp holder 610, a conductive spring 620, a switch plate 630, a detent lever 640, a detent ball 650, a switch contact 660, a spring contact 670, a conductive strip 690, and a strip support 692. The lamp holder assembly 500 is assembled to the chamber 20 by first attaching the conductive spring 620 to the lamp holder 610. The lamp holder 610 includes a spring tab (not shown) which engages and retains a portion of the conductive spring 690 and holds the conductive spring 690 in contact with the spring contact 670, as is shown in FIG. 21. The lamp holder 610 and attached conductive spring are next positioned at the second end 220 of the chamber 20. Referencing FIG. 18, the lamp ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A flashlight in accordance with the present invention includes a chamber, end cap, head assembly and lamp holder assembly. The end cap includes a bowed tripod portion to facilitate standing the flashlight on a flat surface. The head assembly includes a reflector and a lens. In one embodiment of the invention, the head assembly includes an elliptical reflector. In accordance with another embodiment of the present invention, the flashlight having a elliptical reflector is matched with a negative or planar lens. In accordance with another embodiment of the present invention, the head assembly includes an hyperbolic reflector. In accordance with another embodiment of the present invention, the flashlight having a hyperbolic reflector is matched with a positive or planar lens. In accordance with another aspect of the present invention, the flashlight includes electrode connections which prevent the conduction of electrical energy from batteries which are improperly aligned within the flashlight. In another embodiment, the lamp holder assembly includes a lamp socket having a lamp guide which provides a guide for installing lamp bulbs into the lamp socket and also provides a secure position for the lamp bulb. In another embodiment, the lamp holder assembly further includes a fluorescent coating or additive which illuminates light in otherwise dark conditions, thereby facilitating lamp replacement in the less than desirable light conditions. In another embodiment, the flashlight comprises a head assembly attached to the chamber which is rotatable relative to the chamber to cause electrical coupling of a lamp and one or more batteries retained by a chamber. In another embodiment of the flashlight, the spare lamp is held secure by the lamp holder assembly until the user of the flashlight rotates the lamp holder assembly to align a spare lamp opening with the spare lamp.

Description

[0001]This application is a continuation-in-part of application Ser. No. 09 / 013,078 filed Jan. 26, 1998; now U.S. Pat. No. 6,354,715.FIELD OF THE INVENTION[0002]The present invention relates to the field of flashlights and more specifically to hand held portable battery operated flashlights.BACKGROUND OF THE INVENTION[0003]Flashlights generally include a battery chamber having an end cap for retaining one or more batteries, a light bulb electrically connected to the one or more batteries and a reflector for reflecting the light from the light bulb in a particular direction. The electrical connection between the batteries and the light bulb usually includes a switch mechanism for selectively providing electrical energy from the batteries to the light bulb and, therefore enabling the flashlight to be turned on and off. The primary function of flashlights is to provide a convenient portable storable light source which is capable of projecting light in a particular direction.[0004]Some ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): F21L4/04F21L4/00F21V7/04F21V9/16F21V14/04F21V23/04
CPCF21L4/005F21V7/04F21V9/08F21V13/14F21V14/045F21V19/047F21V23/0414
Inventor HALASZ, CHRISTOPHER LEEHALASZ, STEPHEN SANDOR
Owner MAG INSTR INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products