Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Disease risk regulation model establishment method

A technology for model establishment and disease risk, applied in the field of disease risk adjustment model establishment, which can solve the problems of artificially high cost treatment, biased judgment results, failure to consider disease characteristics and other clinically relevant influencing factors, and avoid overfitting. , the effect of improving accuracy and reliability

Active Publication Date: 2015-10-21
中科厚立信息技术(成都)有限公司
View PDF3 Cites 18 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

However, the calculation method based on CMI has its inherent deficiencies in evaluating medical quality, operating efficiency, and rational drug use. First, this model does not take into account the characteristics of the disease itself and other clinically relevant factors, and does not conform to medical laws; Secondly, the inflated cost of treatment itself caused by over-examination and treatment will also increase the instability of the model, resulting in biased judgment results

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Disease risk regulation model establishment method
  • Disease risk regulation model establishment method
  • Disease risk regulation model establishment method

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0075] Example 1: Correlation Analysis of Predictor Variables in Renal Failure Mortality Model

[0076] Model #218: DRG 682,683,684

[0077] Data source: Memorial Hermann Hospital, Texas Medical Center, USA

[0078] Number of patient samples: 2587 Discharge time 7 / 1 / 2004-6 / 30 / 2014

[0079] Number of Significant Variables Filtered: 37

[0080] Number of strongly correlated variables: 4

[0081] Statistical method: Variance Inflation Factor (VIF)

[0082]

[0083] Note: From the 37 variables that were screened out, the strong correlation test was carried out. The value below is the VIF value, and the variables with VIF>5 are marked.

example 2

[0084] Example 2: Importance list of predictor variables in the mortality model for patients with renal failure

[0085] Model #218: DRG 682,683,684

[0086] Data source: Memorial Hermann Hospital, Texas Medical Center, USA

[0087] Number of patient samples: 2587 Discharge time 7 / 1 / 2004-6 / 30 / 2014

[0088] Total number of model variables: 280

[0089] Number of Significant Variables Filtered: 37

[0090] Statistical method: LASSO

[0091]

[0092] Note: The value below the variable represents the importance of the variable, and the higher the value, the greater the impact of the variable on the model.

example 3

[0093] Example 3: Predictor Variable Selection for a Renal Failure Mortality Model

[0094] Model #218: DRG 682,683,684

[0095] Data source: Memorial Hermann Hospital, Texas Medical Center, USA

[0096] Number of patient samples: 2587 Discharge time 7 / 1 / 2004-6 / 30 / 2014

[0097] Total number of model variables: 280

[0098] Number of Significant Variables Filtered: 37

[0099] Statistical method: LASSO

[0100]

[0101]

[0102] Note: Combining the model and clinical experience, the variable rhabdomyolysis, chronic liver disease and later variables were deleted; the strongly correlated variable-organ internal tube was also deleted.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention discloses a disease risk regulation model establishment method. According to the method, for historical data of patients in a hospital or all hospitals in a region, accompanying complications of the patients during hospitalization, population characteristics of patient individuals, hospitalization state sources and the like are integrated into affecting variable factors of disease treatment, and statistic models are established according to the DRG type of a disease diagnosis related group and final treatment information of the patients respectively for performing numerical prediction and analysis on the death rate, the hospitalization period and the hospitalization medical cost of the hospital patients. According to a risk regulation model, the complications and other hospitalization information variables of the patients during hospitalization are innovatively utilized, a check and regression method in classical statistics is adopted, and modeling is carried out in combination with an LASSO method, so that over-fitting caused by too many variables is avoided, the death rate, the hospitalization period and the hospitalization cost of the patients are quantitatively predicted, and new means and way are created for medical analysis and hospital management.

Description

technical field [0001] The invention relates to a method for establishing a disease risk adjustment model. Background technique [0002] In recent years, due to the rapid development of IT technology in domestic hospitals, the accumulation of raw data of patients and diseases has been preliminarily completed. Most of the data can only be stored in the hospital's data warehouse, wasting resources. If we can fully learn from the US government's successful model and excellent methodology of hospital management, and then make localized improvements, it will not only allow domestic medical management agencies to increase effective monitoring methods and means, but also promote hospitals to accelerate the transition from extensive to The pace of refined management model transformation. [0003] Recently, the government actively advocates and encourages the transformation of traditional industries to "Internet +", making full use of digital technology to improve the medical quali...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): G06F19/00
Inventor 杨思坦李涛陶金蓝陈霞
Owner 中科厚立信息技术(成都)有限公司
Features
  • Generate Ideas
  • Intellectual Property
  • Life Sciences
  • Materials
  • Tech Scout
Why Patsnap Eureka
  • Unparalleled Data Quality
  • Higher Quality Content
  • 60% Fewer Hallucinations
Social media
Patsnap Eureka Blog
Learn More