A Buckling-Induced Bracing with Hybrid Sag-Induced Elements at the Ends

A concave, sub-unit technology, applied in building types, buildings, building components, etc., can solve the problems of low design flexibility, unfavorable plastic hinges, etc., to simplify the manufacturing process, reduce the workload of wet work, ensure The effect of component quality

Active Publication Date: 2019-01-25
SOUTHEAST UNIV
View PDF8 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

On June 1, 2016, the applicant proposed an energy-dissipative buckling-constrained support with symmetrical initial defect units at the end (application number 201610383430.5) and a buckling-controlled support with diamond-shaped energy-dissipating units at the end (application No. 201610380804.8) has a fixed geometric configuration and little design flexibility
Moreover, the structure and plate thickness of the energy-dissipating units in the above-mentioned support at the crease are consistent with those at the non-crease, which is not conducive to the generation of plastic hinges at the crease.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • A Buckling-Induced Bracing with Hybrid Sag-Induced Elements at the Ends
  • A Buckling-Induced Bracing with Hybrid Sag-Induced Elements at the Ends
  • A Buckling-Induced Bracing with Hybrid Sag-Induced Elements at the Ends

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0025] The present invention will be further described below in conjunction with the accompanying drawings.

[0026] figure 1 It is a structural schematic diagram of buckling-induced brace with mixed concave-type induced elements at the end, which is composed of end restraint section 1, energy dissipation section 2 and support straight section 3, and end restraint section 1 is fixed at the beam-column node and energy dissipation section 2, the energy dissipation section 2 is fixed at both ends of the supporting straight section 3.

[0027] Such as figure 2 As shown, the end restraint section 1 is composed of a hexagonal steel plate 4, a T-shaped short steel beam 5, and a connecting plate 6 reserved for components such as beams and columns. The hexagonal steel plate 4 is welded to the end of the energy dissipation section 2. The T-shaped short steel beam 5 is welded to the hexagonal steel plate 4, and the hexagonal steel plate 4 and the T-shaped short steel beam 5 are respec...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The invention discloses a buckling induction support with a combined depressed inducing unit in the end part. The buckling induction support comprises a bound segment and an energy consumption section, the buckling induction support further comprises a supporting straight segment, wherein the energy consumption section is arranged at two ends of the supporting straight segment, and is composed of at least one combined depressed inducing unit in a supporting axial direction, each combined depressed inducing unit is a space body of which a cross section is a regular polygonalm and is formed by sequential arrangement of m combined depressed subelements in a circumferential direction, and each combined depressed subelement is a space body which is folded by two trapezoidal plates and eight triangle plates at a same plane. According to the buckling induction support with the combined depressed inducing unit in the end part, under the action of small seisms, the buckling induction support can maintain elasticity, while under middle seisms or a large earthquake, the buckling induction support then enters into a buckling stage, and good hysteretic dissipation capacity of the buckling induction support plays a role of a damper. Compared with a traditional buckling induction support, the buckling induction support with the combined depressed inducing unit in the end part reduces field operation workload, and is energy-saving and environmentally friendly.

Description

technical field [0001] The invention belongs to the technical field of building structures, and in particular relates to a buckling-inducing support with mixed concave-type inducing units at the end, which is suitable for steel structures or concrete structures with buckling-constrained supports. Background technique [0002] During the use of steel structures or reinforced concrete structures, ordinary supports will buckle under compression. When the supports buckle under compression, the stiffness and bearing capacity will decrease sharply. Under the action of earthquake or wind, the internal force of the support changes back and forth under the two states of compression and tension. When the support gradually changes from the buckling state to the tension state, the internal force and stiffness of the support are close to zero. Therefore, the hysteretic performance of ordinary supports is poor under repeated loads. In order to solve the problem of buckling under compres...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Patents(China)
IPC IPC(8): E04B1/98E04H9/02
CPCE04H9/021
Inventor 蔡建国冯健吴胜平周宇航柳杨青马瑞君
Owner SOUTHEAST UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products