2-methylene-vitamin d analogs and their uses

a technology of vitamin d and analogs, applied in the field of vitamin d compounds, can solve problems such as the flattening of the cyclohexanediol ring, and achieve the effects of high binding to vitamin d receptors, high transcriptional activity, and high activity in their ability to mobilize calcium

Active Publication Date: 2013-04-25
WISCONSIN ALUMNI RES FOUND
View PDF0 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0015]The above compounds of formula I, especially formula Ia, Ib, and Ic exhibit a desired, and highly advantageous, pattern of biological activity. These compounds are characterized by relatively high binding to vitamin D receptors, i.e. they bind with about the same or only slightly lower affinity than 1α,25-dihydroxyvitamin D3. They are all very potent in causing differentiation of HL-60 cells. They also exhibit relatively high transcriptional activity as well as relatively high activity in their ability to mobilize calcium from bone, and in their ability to promote intestinal calcium transport, as compared to 1α,25-dihydroxyvitamin D3. Hence, these compounds can be characterized as having relatively high calcemic activity.

Problems solved by technology

Molecular mechanics studies performed on these analogs predict that a change of A-ring conformation may cause flattening of the cyclohexanediol ring.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • 2-methylene-vitamin d analogs and their uses
  • 2-methylene-vitamin d analogs and their uses
  • 2-methylene-vitamin d analogs and their uses

Examples

Experimental program
Comparison scheme
Effect test

examples

[0046]Chemistry. Melting points (uncorrected) were determined on a Thomas-Hoover capillary melting-point apparatus. Optical rotations were measured in chloroform using a Perkin-Elmer 241 automatic polarimeter at 22° C. Ultraviolet (UV) absorption spectra were recorded with a Perkin-Elmer Lambda 3B UV-VIS spectrophotometer in ethanol. 1H nuclear magnetic resonance (NMR) spectra were recorded in deuteriochloroform at 400 and 500 MHz with a Bruker DMX-400 and Bruker DMX-500 spectrometers, respectively. 13C nuclear magnetic resonance (NMR) spectra were recorded in deuteriochloroform at 100 and 125 MHz with a Bruker DMX-400 and Bruker DMX-500 spectrometers, respectively. Chemical shifts (δ) were reported downfield from internal Me4Si (δ 0.00). Electron impact (EI) mass spectra were obtained with a Micromass AutoSpec (Beverly, Mass.) instrument. High-performance liquid chromatography (HPLC) was performed on a Waters Associates liquid chromatograph equipped with a Model 6000A solvent deliv...

example i

Preparation of 1α,25-dihydroxy-2-methylene-vitamin D3 (15)

[0048](a) Wittig reaction of the ketone 1 (SCHEME I). (1R,3R,5R)-1-Acetoxy-3-[(tert-butyldimethylsilyl)oxy]-4-methylene-6-oxabicyclo[3.2.1]octan-7-one (2). A solution of potassium tert-butoxide in THF (1.0 M; 746 μL, 746 μmmol) was added dropwise to a stirred suspension of methyl triphenylphosphonium bromide (280 mg, 784.6 μmol) in anhydrous THF (5.5 mL) at 0° C. The mixture was warmed up to room temperature and stirred for additional 10 min. A solution of ketone 1 (126 mg, 382.7 μmol) in THF (1.6 mL) was added via cannula and stirring was continued at room temperature for 1 h. Water was added and the mixture was extracted with ethyl acetate, dried over MgSO4 and concentrated. The residue was applied on a silica Sep-Pak cartridge and eluted with hexane / ethyl acetate (95:5) to afford compound 2 (91 mg, 73%).

[0049]2: [α]20D −79° (c 1.0 CHCl3); 1H NMR (500 MHz, CDCl3) δ 0.086 (6H, s, 2×SiCH3), 0.921 (9H, s, Si-t-Bu), 2.06 (1H, b...

example ii

Preparation of (20S)-1α,25-dihydroxy-2-methylene-vitamin D3 (21) and (5E)-(20S)-1α,25-dihydroxy-2-methylene-vitamin D3 (22)

[0071](a) Conversion of the Grundmann ketone 16 to the enol triflate 17 (SCHEME III). (20S)-25-[(Triethylsilyl)oxy]-8-trifluoromethanesulfonyloxy-des-A,B-cholest-8-ene (17). A solution of the ketone 16 (28.5 mg, 72.19 mmol) in anhydrous THF (350 μL) was slowly added to the solution of LDA (2.0 M in THF / heptane / ethylbenzene; 40 μL, 80 μmol) in dry THF (100 μL) at −78° C. under argon. Then a solution of N-phenyltriflimide (28.3 mg, 79.27 mmol) in dry THF (100 μL) was added. After 2 h cooling bath was removed and reaction mixture was allowed to warm up to room temperature. Stirring was continued for 30 min and water was added. The mixture was extracted with hexane, dried over MgSO4 and concentrated. The residue was applied on a silica Sep-Pak cartridge and eluted with hexane to afford the enol triflate 17 (17.2 mg, 82% considering recovered substrate) and unreacted...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
temperatureaaaaaaaaaa
thicknessaaaaaaaaaa
thicknessaaaaaaaaaa
Login to view more

Abstract

This invention discloses 2-methylene-vitamin D analogs, and specifically (20S)-1α,25-dihydroxy-2-methylene-vitamin D3 as well as (5E)-(20S)-1α,25-dihydroxy-2-methylene-vitamin D3 and (20R)-1α,25-dihydroxy-2-methylene-vitamin D3, as well as pharmaceutical uses therefor. These compounds exhibit relatively high binding activity and pronounced activity in arresting the proliferation of undifferentiated cells and inducing their differentiation to the monocyte thus evidencing use as an anti-cancer agent especially for the treatment or prevention of osteosarcoma, leukemia, colon cancer, breast cancer, skin cancer or prostate cancer. These compounds also have relatively high calcemic activities evidencing use in the treatment of bone diseases.

Description

BACKGROUND OF THE INVENTION[0001]This invention relates to vitamin D compounds, and more particularly to 2-Methylene-Vitamin D analogs and their pharmaceutical uses, and especially (20S)-1α,25-dihydroxy-2-methylene-vitamin D3, its biological activities, and its pharmaceutical uses, and (5E)-(20S)-1α,25-dihydroxy-2-methylene-vitamin D3, its biological activities, and its pharmaceutical uses, as well as (20R)-1α,25-dihydroxy-2-methylene-vitamin D3, its biological activities, and its pharmaceutical uses. This latter compound can also be named simply as 1α,25-dihydroxy-2-methylene-vitamin D3 since the 20-methyl substituent is in its natural or “R” orientation.[0002]The natural hormone, 1α,25-dihydroxyvitamin D3 and its analog in the ergosterol series, i.e. 1α,25-dihydroxyvitamin D2 are known to be highly potent regulators of calcium homeostasis in animals and humans, and their activity in cellular differentiation has also been established, Ostrem et al., Proc. Natl. Acad. Sci. USA, 84, ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): A61K31/593C07C35/17A61P19/10A61P19/00A61P35/02A61P35/00C07C401/00C07F7/18
CPCC07F7/1856C07C2101/14C07C401/00C07C2102/24C07C2601/14C07C2602/24C07F7/1804A61P1/04A61P13/08A61P13/12A61P15/00A61P17/00A61P19/00A61P19/08A61P19/10A61P35/00A61P35/02A61P43/00
Inventor DELUCA, HECTOR F.PLUM, LORI A.SICINSKI, RAFAL R.SIBILSKA, IZABELA
Owner WISCONSIN ALUMNI RES FOUND
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products