Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions

a technology of aberrant spinal column deviation and alignment method, which is applied in the field of spinal deformation management and correction methods and equipment, can solve the problems of pressing against the lungs, affecting the treatment of spinal deviation anomalies, and presently affecting the conventional treatment and instrumentation for spinal deviation anomalies, so as to facilitate the application of significant derotational forces, reduce the risk of fracture, and facilitate the effect of for

Active Publication Date: 2016-03-24
BARRY MARK A
View PDF2 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The present invention provides an improved method and system for ameliorating aberrant spinal column deviation conditions, such as scoliosis. The system includes bone screws that are implanted in pedicle region of individual vertebrae and a pedicle screw cluster derotation tool that safely applies derotational forces to multiple vertebrae in a simultaneous manner, reducing the risk of fracture. The tool includes shafts or similar engagement members that extend from a common handle or linked handle array and engage the heads of the implanted bone screws. The transfer of forces among the engaged vertebrae is such that a practitioner may, in a single motion, simultaneously and safely derotate multiple vertebrae and apply balancing forces to other vertebrae lateral to the affected segment(s). Overall, the invention is a system and method for spinal column correction that addresses the safety and effectiveness issues associated with existing methods.

Problems solved by technology

A serious deficiency presently exists with respect to conventional treatment and instrumentation for treating spinal deviation anomalies, such as scoliosis.
This circumstance presents a serious medical challenge, because scoliosis, other than mild to moderate cases, is a well-recognized health risk.
This can cause the ribs to press against the lungs, restrict breathing, and reduce oxygen levels.
The distortions may also affect the heart and possibly cause dangerous changes.
Eventually, if the curve reaches more than 100 degrees, both the lungs and the heart can be injured.
Patients with this degree of severity are susceptible to lung infections and pneumonia.
Curves greater than 100 degrees are associated with elevated mortality rates.
People with osteopenia are at greatly increased risk of osteoporosis, a common problem in older women that can cause broken bones and is particularly dangerous for women with a history of scoliosis.
Present treatment regimens for scoliosis carry their own risks and side effects, which include:Spinal fusion disease.
Patients who are surgically treated with fusion techniques lose flexibility and may experience weakness in back muscles due to injuries during surgery.Disk degeneration and low back pain.
With disk degeneration, the disks between the vertebrae may become weakened and may rupture.Height loss.Lumbar flatback.
They may experience fatigue and back pain and even neck pain.Rotational trunk shift (uneven shoulders and hips).
In some patients, years after the original surgery (particularly with the first generation of Harrington rods), the weight of the instrumentation can cause disk and joint degeneration severe enough to require surgery.
Left untreated, or ineffectively treated, scoliosis carries long-term consequences.
Pain in adult-onset or untreated childhood scoliosis often develops because of posture problems that cause uneven stresses on the back, hips, shoulders, necks, and legs.
If the disk degenerates or the curvature progresses to the point that the spinal vertebrae begin pressing on the nerves, pain can be very severe and may require surgery.
Even surgically treated patients are at risk for spondylosis if inflammation occurs in vertebrae around the fusion site.
Follow-up studies of children with scoliosis who did not have strong family and professional support often report significant behavioral problems.
Many studies have reported that patients who were treated for scoliosis have limited social activities and a poorer body image in adulthood.
It is clear, then, that scoliosis treatment options are presently lacking, and untreated scoliosis (except for mild to lower-moderate cases) is not an acceptable alternative.
However, all known systems are limited by their design and known implementation modes on either arresting further deleterious rotation of the involved vertebrae, or fixing individual vertebrae once, by some means, they are brought to approximate a desired orientation and position.
Applying derotational force to a vertebrae in this manner cannot effect en mass spinal reconfiguration without risking vertebral fracture at the point of spinal instrumentation fixation, particularly when using conventional instrumentation.
Furthermore, significant, focused force applied to any individual vertebra risks spinal cord and related injury.
Thus, only force which is inadequate to effect substantial correction to the entire spinal column is thus far ever applied, and correction of scoliotic curvatures are substantially limited.
Nothing in the prior art satisfies these requirements, either individually or in combination.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions
  • System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions
  • System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0038]With reference to FIGS. 1-4 and 7, the spinal deviation correction system of the present invention includes a number of pedicle screws 10, each implanted in respective vertebrae to which rotative forces will be applied in a spinal anomaly correction.

[0039]Pedicle screws 10 may be of a variety of designs, such as, for example, are generally depicted in U.S. Pat. No. 6,743,237 (Gray, et al), U.S. Pat. No. 6,827,719 (Ralph, et al), U.S. Pat. No. 6,652,526 (Arafiles), U.S. Pat. No. 6,375,657 (Doubler, et al), the disclosures of which are incorporated herein by reference.

[0040]With particular reference to FIG. 4, pedicle screws 10 will include a threaded shank segment 12 and a head segment 14. Head segment will be configured with a spinal rod conduit (or channel) 16 or interfacing with a spinal rod 18 (shown in FIG. 3). Spinal rod engagement means 20 serve to fix pedicle screw 10 and spinal rod 18 in relative position and orientation, once a spinal column derotation is complete.

[00...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A system and method for ameliorating spinal column anomalies, such as scoliosis, includes bone screws which are to be implanted in the pedicle region(s) of individual to-be-derotated vertebrae and in vertebrae to which balancing forces must be applied as the spinal column is derotated en mass to achieve an over-all correction of the condition. A pedicle screw cluster derotation tool simultaneously engages multiple pedicle screws and transmits rotative forces to multiple vertebrae to effect a whole-spine correction. Precontoured spinal rods are engaged post-derotation to secure the correction.

Description

PRIORITY CITATION[0001]This patent application is a Continuation of U.S. application Ser. No. 12 / 857,320, filed Aug. 16, 2010, which is a Continuation of U.S. application Ser. No. 11 / 202,409, filed Aug. 10, 2005 now U.S. Pat. No. 7,776,072 issued Aug. 17, 2010, which is a Continuation-in-Part application of U.S. patent application Ser. No. 11 / 027,026, filed Dec. 30, 2004 now U.S. Pat. No. 7,670,358, issued Mar. 2, 2010, the entire contents of which are incorporated by reference.FIELD OF THE INVENTION[0002]The present invention relates to methods and apparatus for management and correction of spinal deformities, such as scoliosis.BACKGROUND OF THE TECHNOLOGY[0003]A serious deficiency presently exists with respect to conventional treatment and instrumentation for treating spinal deviation anomalies, such as scoliosis.[0004]This circumstance presents a serious medical challenge, because scoliosis, other than mild to moderate cases, is a well-recognized health risk.[0005]If scoliosis cu...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A61B17/88A61B17/70
CPCA61B17/7049A61B17/7002A61B17/7077A61B17/7032A61B17/7076A61B2017/564A61B2017/681A61B17/7079A61B17/708A61B2017/567
Inventor BARRY, MARK, A.
Owner BARRY MARK A
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products