Heat exchanging device and method therefor

a technology of heat exchange and heat exchanger, which is applied in the direction of heat exchangers, indirect heat exchangers, heat pumps, etc., can solve the problems of requiring a substantial amount of energy for heating up water, and achieve the effects of reducing the risk of rust or water stains, and improving the life of the devi

Inactive Publication Date: 2016-12-22
BLECKMANN
View PDF10 Cites 9 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0018]In a further embodiment, the first hollow profile comprises stainless steel, wherein the first hollow profile preferably consists of stainless steel. Stainless steel has superior properties in suppressing corrosion, rust or water stains. Preferably, the first medium conducted in the first hollow profile corresponds to water, specifically wastewater from a domestic appliance, such as a dishwasher or washing machine. By choosing the first hollow profile to comprise stainless steel, the first hollow profile's lifetime can thus be increased in view of its frequent contact with water.
[0019]In a further embodiment, the second hollow profile comprises aluminum, wherein the second hollow profile preferably consists of aluminum. Due to its excellent thermal conductivity, aluminum is well-suited as a heat sink material. Preferably, the second medium conducted in the second hollow profile corresponds to a refrigerant, specifically, a refrigerant configured to regain the heat of wastewater in a domestic appliance, such as a dishwasher or washing machine. By choosing the second hollow profile to comprise aluminum, it improves the thermal contact between the first medium and the second medium.
[0020]In a further embodiment, the nominal width of the second hollow profile corresponds to a distance between a first inner surface section of the second hollow profile arranged opposite to the second contact portion and a second inner surface section of the second hollow profile arranged opposite to the outside portion. By limiting the radial width of the second hollow profile in the above-described manner, the present invention provides a second hollow profile of lesser height, where thermal differences along the cross section of the second hollow profile are avoided or at least suppressed.
[0021]In a further embodiment, at least a part of the first hollow profile has a circular cross section. Choosing a circular cross section for the first hollow profile simplifies the manufacturing process for the second hollow profile, since the second hollow profile is wound around the first hollow profile and thus follows the first hollow profile's periphery.
[0022]In a further embodiment, the nominal width of the first hollow profile is equal to or larger than 20 mm and smaller than 120 mm. By providing a minimum nominal width of 20 mm, the present embodiment ensures a sufficiently fast flow rate of the first medium. Keeping the nominal width of the first hollow profile below 120 mm ascertains that the first medium flows slow enough to provide sufficient thermal coupling between the first medium and the second medium.
[0023]In a further embodiment, the nominal width of the second hollow profile is equal to or larger than 5 mm and smaller than 25 mm. By keeping the nominal width of the second hollow profile at a small value (e.g., 25 mm), the present embodiment provides a small height of the cross section profile, thereby leading to avoiding significant thermal differences along the second hollow profile's cross section profile.

Problems solved by technology

Heating up water requires however a substantial amount of energy, where the domestic appliances at the same time produce wastewater that is often still warm.
There is however a problem with the prior art when a first medium (e.g., wastewater) completely surrounds a hollow profile carrying the second medium (e.g., fresh water).

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Heat exchanging device and method therefor
  • Heat exchanging device and method therefor
  • Heat exchanging device and method therefor

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0037]FIG. 1 shows schematically and exemplarily an embodiment of a heat exchanging device 100 in accordance with the present invention. Heat exchanging device 100 comprises a first hollow profile 110 configured to conduct a first medium. In an example, the first medium may be water, in particular wastewater from a dishwasher, a washing machine, or other domestic appliance. The flow direction of the first medium is indicated by arrow 130. Heat exchanging device 100 further comprises a second hollow profile 120 configured to conduct a second medium. In an example, the second medium may be a refrigerant. The flow direction of the second medium is indicated by arrow 140. As illustrated in FIG. 1, at least a part of second hollow profile 120 is wound around at least a part of first hollow profile 110. The present invention proposes to select a nominal width of second hollow profile 120 to be smaller than a nominal width of first hollow profile 110. The nominal width of second hollow pro...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A heat exchanging device having a first hollow profile configured to conduct a first medium, a second hollow profile configured to conduct a second medium, and where at least a part of the second hollow profile is wound around at least a part of the first hollow profile. A nominal width of the second hollow profile is smaller than a nominal width of the first hollow profile. An outer surface of the first hollow profile comprises a first contact portion, an outer surface of the second hollow profile comprises a second contact portion, and the first contact portion and the second contact portion are coupled by means of a soldered connection.

Description

BACKGROUND[0001]Technical Field[0002]The disclosure relates to a heat exchanging device, to a heat pump, to a domestic appliance, to a method of operating a heat exchanging device, and to a method of providing a heat exchanging device.[0003]Description of the Related Art[0004]Many domestic appliances, such as, e.g., dishwashers or washing machines, are designed to heat water during operation of the appliance. Heating up water requires however a substantial amount of energy, where the domestic appliances at the same time produce wastewater that is often still warm. Efforts have thus been made to recover the thermal energy of wastewater in domestic appliances.[0005]DE2743333A1 discloses a heat recovery system recovering heat from waste water from washing basins, sinks, bidets and showers. These sanitary installations have hot and cold water supply and smell trap in outlet. Heat recovered is used for fresh water preheating. The smell trap itself or a connected vessel forms heat exchang...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): F25B13/00
CPCF25B13/00F25B30/00F28D7/0008F28D7/024F28F1/00F28D7/0033F28F1/02F28D2021/007F28D2021/0071F28F2275/04
Inventor HOFER, JOHANNPLESCHINGER, ANDREAS
Owner BLECKMANN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products