Valve with outlet flow rate regulation, and container equipped with such a valve

Inactive Publication Date: 2003-08-05
LOREAL SA
View PDF6 Cites 28 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

Advantageously, the moving piston is mounted slidably inside the regulating chamber. The seal between the compartment containing the calibrated spring and the compartment forming the actual regulating chamber is improved by using a flexible diaphragm arranged inside the body of the regulating chamber between the piston and the calibrated spring. As a preference, such a diaphragm is overmoulded or two-shot injection moulded with the body of the regulating chamber. This diaphragm improves the seal between the two comp

Problems solved by technology

Modernly, the problem of variations in performance between the initial use of a container and the final use is encountered in the field of aerosol dispensers.
These problems arise, in particular, in devices in which the product is pressurized by means of a compressed gas, especially carbon dioxide or nitrogen dioxide.
The variations in flow rate and/or pressure are directly associated with the pressure drops inside the container, which inevitably cause a drop in product outlet flow rate.
One of the drawbacks associated with such a regulating system stems from the fact that the calibrated spring is arranged in a part of the valve body in communication with the product.
Thus, for each new formulation, it is necessary to use a different calibra

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Valve with outlet flow rate regulation, and container equipped with such a valve
  • Valve with outlet flow rate regulation, and container equipped with such a valve
  • Valve with outlet flow rate regulation, and container equipped with such a valve

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

The container 100 depicted in FIG. 1 is in the form of a can, for example made of aluminium, comprising a body 101, and a first end 102 which is closed by an end wall 103. A second end 104 is open and is surmounted by a valve 1 mounted on a dish 105, crimped to a rolled-over edge 106 of the can. The valve 1 is crimped or clipped to the dish 105. A push-button 109 is mounted on the valve so as to allow the valve 1 to be actuated and the product to be diffused via an outlet nozzle 107. A dip tube 108 is connected to the valve 1 and descends more or less as far as the end wall 103 of the can. The valve will be described in detail with reference to FIGS. 2A-2C and 3A-3C.

In the embodiment of FIGS. 2A-2C, the valve 1 mainly comprises a body 2, the end wall 3 of which has, at its center, an orifice 4 surrounded by an axial hollow shaft 7, arranged outside the valve body 2, and intended to receive a dip tube 108. The end of the valve body opposite to the end wall 3 is open. The edge delimit...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A valve (1), particularly for an aerosol container, includes, inside a valve body (2), an inlet passage (4) communicating with the container and an outlet passage (10), a first elastic return (16) for urging the valve (1) into the closed position, and a regulator for regulating the product outlet flow rate, which includes a second elastic return (14) for supplying a set-point pressure for the regulator. The second elastic return (14) is arranged in a compartment (12) of the valve body (2) isolated from the product, the pressure inside the compartment (12) being equal to atmospheric pressure.

Description

BACKGROUND OF THE INVENTION1. Field of the InventionThe present invention relates to a valve of an aerosol container for example, intended for dispensing a product at an essentially constant flow rate, for example, a cosmetic product. The invention is most particularly suited for dispensing deodorants or hairstyling products, especially lacquers or mousses.2. Description of the Related ArtModernly, the problem of variations in performance between the initial use of a container and the final use is encountered in the field of aerosol dispensers. These problems arise, in particular, in devices in which the product is pressurized by means of a compressed gas, especially carbon dioxide or nitrogen dioxide. In such devices, the gas is either directly in contact with the product or isolated from the product by a piston or a bag containing the product. The variations in flow rate and / or pressure are directly associated with the pressure drops inside the container, which inevitably cause a ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): B65D83/14A45D34/04B65D83/44
CPCB65D83/44
Inventor BENOIST, JEAN-FRANCOIS
Owner LOREAL SA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products