Experiment apparatus and method for measuring Young modulus based on beam deflection technology of resonance principle

A technology based on Young's modulus and principles, applied in the field of university physics experiments, can solve problems such as difficult to understand, single principle, and many precautions

Inactive Publication Date: 2016-12-21
田凯
View PDF0 Cites 1 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0005] First, the static tensile method is usually used to measure the Young's modulus of metal materials, and the principle is relatively simple
[0006] Second, according to the optical lever amplification principle, the sag of the midpoint of the rectangular cross-section metal beam is measured through the amplification system composed of the optical lever, the telescope and the ruler. Although the method is ingenious, the principle is abstract and di

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Experiment apparatus and method for measuring Young modulus based on beam deflection technology of resonance principle
  • Experiment apparatus and method for measuring Young modulus based on beam deflection technology of resonance principle
  • Experiment apparatus and method for measuring Young modulus based on beam deflection technology of resonance principle

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0039] Among the figure, two columns 4 are set on the base 1, and a steel knife edge is respectively fixed at the upper ends of the two columns 4, i.e. the column knife edge 5, the blades of the two knife edges are parallel to each other, and the two ends of a rectangular cross-section metal beam 6 freely straddle the Placed on the edge of the upper ends of the two columns 4, a copper frame 7 is placed on the rectangular cross-section metal beam 6, and the contact between the copper frame 7 and the rectangular cross-section metal beam 6 is also a knife edge, that is, the copper frame knife edge 8, and the copper frame knife edge 8 Just in the middle of the knife edges at the upper ends of the two columns, an exciter 9 is set at the lower end of the copper frame 7 , the exciter 9 is connected to a metal frame 10 through a connecting device, and an iron block 32 is fixed inside the metal frame 10 . The exciter 9 is connected to the sinusoidal signal source 11 through the interfac...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The experimental device and method for measuring Young's modulus by the beam bending method based on the principle of resonance relates to a Young's modulus measuring device and method. Problems that are difficult to adjust. The device of the present invention includes setting two columns on the base, the two ends of the metal beam with rectangular cross-section are freely straddled on the knife edge of the upper end of the column, a copper frame is placed on the metal beam, and the vibration exciter and the metal plate for fixing the iron block are arranged at the lower end. The framework, the exciter is connected with the signal source, and the measuring device is composed of a Hall element, a measurement controller, a voltage amplification device and an oscilloscope; the method of the present invention uses the exciter to convert the sinusoidal signal into mechanical vibration, so that the metal beam spring vibrator is subjected to The forced vibration is converted into an electrical signal by the Hall element, and the frequency of the signal is adjusted. When the waveform amplitude is the largest, the natural frequency of the metal beam spring vibrator is obtained, and the Young's modulus is calculated by substituting it into the formula. The invention is applicable to the measurement of Young's modulus.

Description

technical field [0001] The invention relates to a university physics experiment, in particular to an experimental device and method for measuring Young's modulus by a beam bending method based on the resonance principle. Background technique [0002] The change in shape of a solid under the action of an external force is called deformation. It can be divided into elastic deformation and normative deformation. The deformation that an object can completely return to its original shape after the external force is removed is called elastic deformation. If the external force applied to the object is too large, so that after the external force is removed, the object cannot completely return to its original shape, leaving residual deformation, which is called normative deformation. In this experiment, only elastic deformation is studied. Therefore, the magnitude of the external force should be controlled to ensure that the object can return to its original shape after the extern...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): G01N3/20G01N3/06
CPCG01N3/20G01N3/06G01N3/062G01N2203/0023G01N2203/0075G01N2203/0658G01N2203/0682
Inventor 田凯贺欢蔡晓艳贾洁王照平
Owner 田凯
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products