Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Unsupervised domain adaptive image classification method based on conditional generative adversarial network

A technology of conditional generation and classification methods, applied in biological neural network models, computer components, instruments, etc., can solve problems such as the limitations of classification tasks, achieve considerable use value, improve classification accuracy, and improve domain adaptability.

Active Publication Date: 2019-05-14
NANJING NORMAL UNIVERSITY
View PDF6 Cites 87 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

However, although such methods improve the performance of domain adaptation to a certain extent, they are still limited for classification tasks. They only achieve cross-domain image generation by aligning sample distributions while ignoring the impact of classification labels during this period.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Unsupervised domain adaptive image classification method based on conditional generative adversarial network
  • Unsupervised domain adaptive image classification method based on conditional generative adversarial network
  • Unsupervised domain adaptive image classification method based on conditional generative adversarial network

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0042] The technical solution of the present invention will be described in detail below in conjunction with the accompanying drawings.

[0043] Such as figure 1 As shown, the present invention proposes an unsupervised domain adaptive image classification method based on a conditional generation confrontation network. The core step of the present invention is to construct a conditional confrontation image generation network and combine the labeled source domain images to effectively use unlabeled targets. The domain image is trained, and the description of the specific implementation mainly focuses on step 2.

[0044] Step 1. Image preprocessing

[0045] The quality of the image has a direct impact on the realization of the algorithm and the classification effect. Normalizing the image is a way to simplify the calculation, which is of great significance for improving the classification accuracy. Given an image sample X, according to the formula img=(X-mean) / std, where mean and std...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention discloses an unsupervised domain adaptive image classification method based on a conditional generative adversarial network. The method comprises the following steps: preprocessing an image data set; constructing a cross-domain conditional confrontation image generation network by adopting a cyclic consistent generation confrontation network and applying a constraint loss function; using the preprocessed image data set to train the constructed conditional adversarial image generation network; and testing the to-be-classified target image by using the trained network model to obtain a final classification result. According to the method, a conditional adversarial cross-domain image migration algorithm is adopted to carry out mutual conversion on source domain image samples andtarget domain image samples, and consistency loss function constraint is applied to classification prediction of target images before and after conversion. Meanwhile, discriminative classification tags are applied to carry out conditional adversarial learning to align joint distribution of source domain image tags and target domain image tags, so that the source domain image with the tags is applied to train the target domain image, classification of the target image is achieved, and classification precision is improved.

Description

Technical field [0001] The invention belongs to the field of unsupervised domain adaptive image classification, and particularly relates to an unsupervised domain adaptive image classification method based on a conditional generation confrontation network. Background technique [0002] The development of deep learning is of great significance to the improvement of feature learning and classification task performance. While training a deep network requires a large number of labeled samples, but in practical applications the target samples to be classified often lack category labels, which makes classification training particularly difficult. Faced with this difficulty, the usual approach is to train an effective classifier from labeled source domain samples to assist in the classification of unlabeled target domain samples, but how to reduce the distribution of source domain samples and target domain samples The difference makes the classifier better adapted to the target domain ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): G06K9/62G06N3/04
Inventor 杨琬琪凌彤杨明
Owner NANJING NORMAL UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products