Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Method and system for realizing cross-language knowledge space entity alignment based on link prediction

A link prediction and entity pairing technology, applied in semantic analysis, relational database, semantic tool creation, etc., can solve problems such as labor-intensive, incomplete information input, polysemy of restricted words translation accuracy, etc. Lightweight and saving computing resources

Active Publication Date: 2020-05-22
BEIHANG UNIV
View PDF11 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

However, these knowledge spaces have certain limitations. For example, the English knowledge space does not include comprehensive information on non-English regions. Therefore, by integrating information from these different language knowledge spaces, a larger and more comprehensive multilingual knowledge space system is formed. , can provide customers with more comprehensive information services
However, the traditional word translation model-based fusion technology is limited by the translation accuracy of the word and the polysemy of the word itself. For example, the word Chaoyang can refer to Chaoyang District in Beijing or Chaoyang City in Liaoning Province.
The deep learning model learns the entity and relationship vectors of the knowledge space, and uses the already marked entity pairs to train the alignment model, which requires a large amount of information to be marked and consumes a lot of manpower

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method and system for realizing cross-language knowledge space entity alignment based on link prediction
  • Method and system for realizing cross-language knowledge space entity alignment based on link prediction
  • Method and system for realizing cross-language knowledge space entity alignment based on link prediction

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0037] Below are preferred embodiments of the present invention and in conjunction with accompanying drawing, the technical scheme of the present invention is described further, but the present invention is not limited to this embodiment.

[0038] The method for realizing cross-lingual knowledge space entity alignment based on link prediction in the present invention includes four main steps of cross-lingual knowledge space triple fusion, knowledge space representation learning, prediction of new alignment entity pairs, and self-learning adding new training data. They are as follows:

[0039] Cross-lingual knowledge space triple fusion: The main work is to generate new cross-knowledge space triples based on existing aligned seed entity pairs. The existence of these new cross-space triples is to constrain the relationship between the same pair of entities. The semantic vectors are close, and the representation vectors of the entities of the two knowledge spaces are unified in t...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention relates to a method and a system for realizing cross-language knowledge space entity alignment based on link prediction. According to the method, predicted entity pairs are generated through four steps of cross-language knowledge space triple fusion, knowledge space representation learning, prediction of new aligned entity pairs and addition of new training data through self-learning, a new entity pair predicted based on a link prediction method is designed for small amount of training corpus, cross-language knowledge space fusion is carried out, the efficiency of judging whetherthe entity pair of the cross-language knowledge space is the same entity or not in data fusion in the two knowledge spaces is improved on the basis, the design of the method model is light and labeling manpower is saved.

Description

technical field [0001] The present invention relates to the fields of artificial intelligence and machine learning, in particular to a method for realizing entity alignment in cross-language knowledge space based on link prediction. Background technique [0002] With the development of modern Internet technology, more and more information is accumulated on the Internet. When users retrieve information and consult e-commerce companies, they are not only satisfied with the results of traditional simple keyword search and matching, but also pursue more intelligent and personalized search and Q&A services. At present, a large number of Internet companies at home and abroad, such as Google, Amazon, Baidu, and Tencent, have established their own knowledge space systems, using knowledge space technology to provide customers with more intelligent services. Knowledge space technology can combine relevant knowledge in reality, No matter in the field of information retrieval or intell...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(China)
IPC IPC(8): G06F40/30G06F16/28G06F16/36
CPCG06F16/288G06F16/367
Inventor 李建欣黄洪仁李倩宁元星毛乾任
Owner BEIHANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products