Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Dispersant and foaming agent combination

a foaming agent and dispersant technology, applied in the field of dispersant and foaming agent combination, can solve the problems of increasing the final cost of gypsum wallboard, increasing freight charges, and reducing so as to reduce the density and overall weight of the final product, increase the strength of wallboard, and reduce the amount of water

Inactive Publication Date: 2004-05-13
GEO SPECIALTY CHEM
View PDF19 Cites 18 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0012] The present invention provides a dispersant and foaming agent combination that is useful in the production of gypsum wallboard and other aqueous cementitious products, a method of forming a gypsum wallboard and a gypsum wallboard. The dispersant and foaming agent combination according to the invention increases the void size of air that is entrained in the gypsum wallboard increasing the strength of the wallboard (via nail pull), thereby allowing one to reduce the density and overall weight of the final product. Furthermore, the dispersant and foaming agent combination according to the invention reduces the amount of water required to obtain a free-flowing aqueous core slurry, which reduces the energy costs necessary to cure and dry the gypsum wallboard thereby decreasing production time.
[0014] Conventional dispersants used in the production of gypsum wallboard typically have a weight average molecular weight of from about 8,000 to about 14,000. At these molecular weights the molecular weight differences have negligible effect on efficiency of the dispersant, and at this molecular weight, there is virtually no detectable interaction between the dispersant and foaming agents. Applicants have surprisingly discovered that when a higher molecular weight dispersant is used, the dispersing effect is increased, and an synergistic interaction occurs between the dispersant and the foaming agent that produces a gypsum wallboard core effect that more efficiently entrains air (i.e., creates void space).
[0023] It will be appreciated that the weight average molecular weight of the resulting naphthalene sulfonate-aldehyde condensate salt polymer may be adjusted by varying the mole equivalents of aldehyde that are reacted with the sulfonated naphthalene during the condensation reaction. A mole ratio of formaldehyde to naphthalene sulfonate of about 1.25:1.00 will result in the production of a naphthalene sulfonate-formaldehyde condensate salt polymer having a weight average molecular weight of about 22,000, which is presently most preferred. Reducing the mole ratio of aldehyde to naphthalene sulfonate will result in a naphthalene sulfonate-aldehyde condensate salt polymer having a lower weight average molecular weight.
[0028] Applicants surprisingly discovered that the dispersing effect of a higher weight average molecular weight naphthalene sulfonate-aldehyde condensate salt polymer (e.g., 22,000) is superior to the dispersing effect obtained through the use of a similar polymer having a lower weight average molecular weight (e.g., 12,000) at the same solids loading ratio. At the same solids loading ratio, use of a higher weight average molecular weight naphthalene sulfonate-aldehyde condensate salt polymer (e.g., 22,000 versus 12,000) results in at least 15% reduction in the viscosity of the aqueous gypsum core slurry as measured by slump.
[0031] The invention also relates to an improved gypsum board and particularly to a gypsum board having a decreased density, but which has an acceptable structural strength, e.g. compressive strength. Such strength allows the board to maintain its structural integrity in the vicinity of fasteners, e.g. nails, screws, etc., that may be driven into the board. A wallboard in accordance with the invention comprises a hardened gypsum-containing core having a layer of paper disposed thereon. Due to the improved strength of the gypsum-containing core, a lighter weight paper can be used. Paper having a weight of at least about 45 pounds per thousand feet is conventionally used in the fabrication of gypsum wallboard, but a wallboard according to the present invention can be formed using paper having a maximum weight of about 35 pounds per thousand square feet, yet still exhibit a nail pull resistance of at least about 77 pounds based upon a one-half inch board thickness as measured in accordance with the ASTM C473-00.

Problems solved by technology

Weight, rather than volume, determines the amount of gypsum wallboard that can be shipped by truck, and freight charges add significantly to the final cost of gypsum wallboard.
As noted in Jobbins, U.S. Pat. No. 6,171,388, as the volume of air bubbles in gypsum wallboard increases, the strength of the wallboard tends to dramatically decrease, making the wallboard commercially unacceptable.
Some of these methods are effective at reducing the overall weight of the gypsum wallboard, but are expensive and / or present other problems.
Thus, prior art efforts to create lightweight gypsum wallboard have met with limited success.
In addition to freight costs discussed above, another significant factor adding to the final cost of gypsum wallboard is the energy required to remove excess water from the slurry during curing and drying.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Dispersant and foaming agent combination

Examples

Experimental program
Comparison scheme
Effect test

example 2

[0036] 50 grams of stucco (less any solids derived from the dispersant used) were placed into a mixing cup. 36 grams of water (less any water derived from the dispersant used) were placed into a second mixing cup. Various dosages of the dispersants formed in Example 1 were added to the water in the second mixing cup to approximate the pounds of dispersant that would be present per thousand square feet ("MSF") of dried, finished wallboard if the material had been used to form 1 / 2" gypsum wallboard. The stucco was added into the water / dispersant mixing cup and the components were blended by rapid hand stirring for 30 seconds. Immediately after mixing, the slurry was poured directly onto a clean glass surface from a height of 4 cm. A roughly uniform diameter disc was formed in each case. The discs were allowed to set thoroughly and when completely set (hardened / dried), were removed from the glass surface using a metal spatula. The discs were turned over and their diameters were measure...

example 3

[0038] One-half inch thick gypsum wallboards were produced at a commercial wallboard plant operating at a line speed of 410 feet per minute. The aqueous gypsum slurries used to fabricate the wallboards were sandwiched between sheets of paper weighing 45 pounds per MSF. The aqueous gypsum slurries consisted of mixtures of 1,365 pounds per MSF of calcined gypsum, 10 pounds per MSF of accelerator (ball milled gypsum crystals), 470 pounds per MSF of gauging water, 470 pounds per MSF of raw water, 110 pounds per MSF of foam water, 8.5 pounds per MSF of starch, 0.5 pounds per MSF of fiberglass, 0.18 pounds per MSF of retarder (diethylenetriaminepentaacetic acid), and the loadings in pounds per MSF of dispersant from Example 1) and foaming agent specified in Table 2 below. "AES" is an alkyl ether sulfate foaming agent sold as HYONIC PFM 33, and "AES / AS" is a combination alkyl ether sulfate / alkyl sulfate foaming agent sold as HYONIC PFM 10, both of which are available from GEO Specialty Che...

example 4

[0039] One-half inch thick gypsum wallboards were produced at a commercial wallboard plant operating at a line speed of 410 feet per minute. The aqueous gypsum slurries used to fabricate the wallboards had the same general composition as set forth in Example 3 above (exclusive of dispersants and foaming agents). In Plant Trial 4-A, the aqueous gypsum slurry further comprised 4.0 pounds per MSF of the 22,000 weight average molecular weight dispersant formed in Example 1, but no foaming agent. In Plant Trial 4-B, the aqueous gypsum slurry further comprised 4.0 pounds per MSF of the 22,000 weight average molecular weight dispersant formed in Example 1 and 0.26 pounds per MSF of HYONIC PFM 10 foaming agent. Wallboards were formed by sandwiching the aqueous slurries between sheets of paper weighing 45 pounds per thousand square feet at a rate of 1,670 pounds of aqueous slurry per thousand square feet. The hardened finished wallboards were then tested for nail pull resistance. Wallboard f...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
thicknessaaaaaaaaaa
mole ratioaaaaaaaaaa
mole ratioaaaaaaaaaa
Login to View More

Abstract

The present invention provides a dispersant and foaming agent combination that is useful in the production of gypsum wallboard and other aqueous cementitious products, a method of forming a gypsum wallboard and a gypsum wallboard. The dispersant in the combination according to the invention is a naphthalene sulfonate-aldehyde condensate alkali salt polymer having a weight average molecular weight of from about 17,000 to about 47,000. The alkali is preferably an alkali metal and / or an alkaline earth metal. The aldehyde is preferably formaldehyde. The foaming agent used in the combination according to the invention is a soap, preferably an alkali salt of an alkyl ether sulfate and / or an alkyl sulfate. The combination of a high molecular weight dispersant and a foaming agent produces a gypsum wallboard core effect that more efficiently entrains air (i.e., creates void space), thereby lowering overall board weight without detrimentally affecting strength. A gypsum wallboard formed using the dispersant and foaming agent combination according to the invention exhibits a higher nail pull value than gypsum wallboard formed using a conventional dispersant and a foaming agent at the same solids loading ratio.

Description

[0001] This application is a continuation of U.S. application Ser. No. 10 / 214,467 filed Aug. 7, 2002 also entitled "Dispersant and Foaming Agent Composition" which is incorporated herein by reference.[0002] The present invention relates to a dispersant and foaming agent combination that is useful in the production of gypsum wallboard and other aqueous cementitious products, a method of forming a gypsum wallboard and a gypsum wallboard.[0003] Gypsum wallboard is used in the construction of residential and commercial buildings to form interior walls and ceilings. Because it is relatively easy to install and requires minimal finishing, gypsum wallboard is preferred over plaster in almost all applications.[0004] Gypsum wallboard consists of a hardened gypsum-containing core surfaced with paper or other fibrous material suitable to receive a coating such as paint. It is common to manufacture gypsum wallboard by placing an aqueous core slurry comprised predominantly of calcined gypsum bet...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): B28B19/00C04B24/22C04B28/14C09K23/00E04C2/04
CPCB28B19/0092C04B24/226C04B28/14C04B2103/408Y10S516/909E04C2/043C04B2111/0062C04B24/085C04B38/10C04B40/006C04B24/16
Inventor SAVOLY, ARPADELKO, DAWN P.VEAL, BENNIEMCCRARY, JAMES
Owner GEO SPECIALTY CHEM
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products