Printing apparatus and processes employing intermediate transfer with molten intermediate transfer materials

a technology of intermediate transfer and printing apparatus, which is applied in the direction of electrographic process apparatus, printing, instruments, etc., can solve the problems of inability to allow oil to pass through the maintenance cartridge and affecting the quality of the intermediate transfer member

Inactive Publication Date: 2005-04-07
XEROX CORP
View PDF82 Cites 24 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

Disclosed herein is a printing apparatus for applying a marking material to a final substrate, said printing apparatus comprising: (a) an intermediate transfer member; (b) an intermediate transfer material applicator for transferring intermediate transfer material from a solid block of intermediate transfer material to form a molten layer of intermediate transfer material on the intermediate transfer member; (c) a marking material applicator situated to apply marking material in an imagewise pattern to the molten layer of intermediate transfer material on the intermediate transfer member; and (d) a transferring apparatus to transfer the imagewise pattern of marking material to a final reco

Problems solved by technology

Intermediate transfer oil, however, has certain limitations and disadvantages.
In addition, the liquid in the intermediate transfer member maintenance cartridge

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Printing apparatus and processes employing intermediate transfer with molten intermediate transfer materials
  • Printing apparatus and processes employing intermediate transfer with molten intermediate transfer materials
  • Printing apparatus and processes employing intermediate transfer with molten intermediate transfer materials

Examples

Experimental program
Comparison scheme
Effect test

example i

To a 4-neck, round bottom flask equipped with a stirrer, condenser, temperature controller, and sparge tube are charged 200 grams of 1-octadecene (available from CPChem Company, The Woodlands, Tex.), 100 grams of toluene, and 52.8 grams of polymethylhydrosilane HMS-991 (available from Gelest, Inc., Tullytown, Pa.) of the following formula:

(n=22-30, MW=1,500-1,900 g / mol). The flask contents are agitated and heated to 100° C. The reaction mixture is sparged with a light stream of nitrogen gas. After equilibrating at the mentioned temperature, heating and sparging are discontinued, and the reaction is catalyzed with 0.3 cc of 3.3% chloroplatinic acid solution in ethanol. Subsequently, the temperature of the reaction mixture goes to a maximum of 110° C. within 10 minutes. After the reaction goes to completion, the mixture is treated with 2% water and 0.2% concentrated HCl at a temperature of approximately 60° C. for one hour. Afterwards, the reaction mixture is neutralized with dry ...

example ii

To a 4-neck, round bottom flask equipped with a stirrer, condenser, temperature controller, and sparge tube are charged 200 grams of allyl alcohol propoxylate (available from Aldrich Chemical Co., Milwaukee, Wis., Cat. Number 43,037-4), of the formula

wherein x represents the number of repeat propoxylate groups (average value of from about 1.4 to about 1.8; average number average molecular weight 140-160), 90 grams of toluene, and 283.8 grams of methylhydrosiloxane dimethylsiloxane Copolymer HMS-301 (available from Gelest, Inc., Tullytown, Pa.) of the following formula:

(m=7-9, n=17-19, MW=1,900-2,000 g / mol). The flask contents are agitated and heated to 95° C. with a light nitrogen sparge. After equilibrating at this temperature, heating and sparging are discontinued, and the reaction is catalyzed with 0.3 cc of 3.3% chloroplatinic acid solution in ethanol. Subsequently, the temperature of the reaction mixture goes to a maximum of 110° C. within 10 minutes. After the reaction ...

example iii

To a 4-neck, round bottom flask equipped with a stirrer, condenser, temperature controller, and sparge tube are charged 300 grams of the product prepared in Example II and 310 grams of stearyl isocyanate (available as Mondur O from Bayer Corp., Pittsburgh, Pa.). The mixture is melted in the flask, brought to a temperature of 120° C., and stirred. After thermal equilibrium has been reached, 2 drops of a catalyst solution (dibutyltin oxide, FASCAT® 4202, available from Atofina Chemicals, Philadelphia, Pa.) are added. The reaction becomes exothermic, and the temperature peaks at 150° C. Subsequently, the reaction mixture is stirred for another 1.5 hours. FTIR analysis can be used to determine that all of the isocyanate has reacted with the alcohol groups of the dimethicone copolyol from Example II. It is believed that the product obtained will have the formula

wherein m=7-9, n=17-19, and x has an average value of from about 1.4 to about 1.8.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A printing apparatus for applying a marking material to a final substrate, said printing apparatus comprising an intermediate transfer member; an intermediate transfer material applicator for transferring intermediate transfer material from a solid block of intermediate transfer material to form a molten layer of intermediate transfer material on the intermediate transfer member; a marking material applicator situated to apply marking material in an imagewise pattern to the molten layer of intermediate transfer material on the intermediate transfer member; and a transferring apparatus to transfer the imagewise pattern of marking material to a final recording substrate.

Description

BACKGROUND Disclosed herein are printing apparatus and processes employing intermediate transfer members. More specifically, disclosed herein are printing apparatus and processes wherein a molten layer of an intermediate transfer material is applied to the surface of an intermediate transfer member, followed by printing upon the molten intermediate transfer material layer and transferring the printed image to a final substrate. One specific embodiment is directed to a printing apparatus for applying a marking material to a final substrate, said printing apparatus comprising: (a) an intermediate transfer member; (b) an intermediate transfer material applicator for transferring intermediate transfer material from a solid block of intermediate transfer material to form a molten layer of intermediate transfer material on the intermediate transfer member; (c) a marking material applicator situated to apply marking material in an imagewise pattern to the molten layer of intermediate tran...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): B41J2/005B41J11/00G03G15/06G03G15/16
CPCB41J2/0057B41J2/17593G03G15/162G03G15/161B41J11/002B41J11/00244
Inventor KING, CLIFFORD R.WEDLER, WOLFGANG G.
Owner XEROX CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products