Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Fracture resistant electrodes for a carbothermic reduction furnace

Inactive Publication Date: 2005-11-17
SGL CARBON AG
View PDF10 Cites 8 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0032] In other words, the present invention provides for graphite electrodes for the production of aluminum by carbothermic reduction of alumina, more particularly to the graphite electrodes submerged into the molten bath in the low temperature compartment as well as to the electrodes horizontally arranged in the side walls of the high temperature compartment. The electrodes of this invention are manufactured by using a mixture of coke particles covering the complete particle size range between 25 μm to 3 mm and by using an intensive mixer to effectively wet all coke particles with pitch and said electrodes having a flexural strength of at least 20 N / mm2.
[0033] By using a complete range (continuum) of particle sizes in conjunction with an intensive mixer, the geometric packing of the particles is significantly improved, hence the material density is increased and thus a higher mechanical strength as well as improved electrical conductivity in comparison to conventional graphite electrodes is achieved.

Problems solved by technology

In comparison with processes used to produce competing materials, such as steel and plastics, the process is energy-intensive and costly.
Unless recovered, these volatile species represent a loss in the yield of aluminum.
The technical as well as economical requirements to establish and run such grinding, milling and sieving equipment are quite substantial, yet they are not in any case offset by the high quality properties of the finished graphite products.
In the context of the production of aluminum by carbothermic reduction, the requirements to the mechanical strength of the graphite electrodes submerged into the molten bath in the low temperature compartment and even more so to the electrodes horizontally arranged in the side walls of the high temperature compartment are challenging because the relatively long electrodes have to sustain the partially extensive movements of the molten bath which furthermore contains solid particles of carbon and slag a well as gas bubbles, all contributing to a mechanically demanding environment.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example

[0038] According to this invention, the as-shipped anode or needle coke particles are initially screened into two fractions, with a coarse-grain fraction containing particles larger than 5 mm. The coarse grain fraction is then online-fed into a mill having stronger milling-paddles and yielding grains of 200 μm to 3 mm. In parallel, a fine-grain fraction is fed into a mill designed for finer grains and providing particles of 25 μm to 300 μm size. The two fractions are then joined once more and the resulting powder contains coke particles with a Gaussian particle size distribution between 25 μm and 3 mm.

[0039] The power is pre-heated to 100-125° C. in a rotating-drum heating unit and then mixed at 150 to 160° C. in an intensive mixer, such as an Eirich mixer (Maschinenfabrik Gustav Eirich GmbH & Co KG, Hardheim, Germany), together with 15% (w / w) binder pitch.

[0040] In one further embodiment, up to 5% (w / w) graphite dust from machining of graphite electrodes and green scrap from othe...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Temperatureaaaaaaaaaa
Temperatureaaaaaaaaaa
Temperatureaaaaaaaaaa
Login to View More

Abstract

Graphite electrodes for the production of aluminum by carbothermic reduction of alumina are either submerged in the molten bath in the low temperature compartment or they are horizontally arranged in the side walls of the high temperature compartment. The electrodes are manufactured by using a mixture of coke particles covering the complete particle size range between 25 μm to 3 mm and by using an intensive mixer to effectively wet all coke particles with pitch. The electrodes have a flexural strength of at least 20 N / mm2. By using a complete range (continuum) of particle sizes in conjunction with an intensive mixer, the geometric packing of the particles is significantly improved, hence the material density is increased and thus a higher mechanical strength as well as improved electrical conductivity in comparison to conventional graphite electrodes is achieved.

Description

CROSS-REFERENCE TO RELATED APPLICATION [0001] This application claims the benefit under 35 U.S.C. § 119 (e), of copending U.S. Provisional Application No. 60 / 571,755, filed May 17, 2004.BACKGROUND OF THE INVENTION [0002] 1. Field of the Invention [0003] The present invention relates to graphite electrodes for the production of aluminum by carbothermic reduction of alumina. [0004] 2. Description of the Related Art [0005] For a century the aluminum industry has relied on the Hall-Heroult process for aluminum smelting. In comparison with processes used to produce competing materials, such as steel and plastics, the process is energy-intensive and costly. Hence, alternative aluminum production processes have been sought. [0006] One such alternative is the process referred to as direct carbothermic reduction of alumina. As described in U.S. Pat. No. 2,974,032 (Grunert et al.) the process, which can be summarized with the overall reaction Al2O3+3 C=2 Al+3 CO   (1) takes place, or can be ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): C04B35/532C10L5/02C22B4/08C22B5/10C22B21/02C25C3/12H05B7/085
CPCC22B4/08H05B7/085C22B21/02C22B5/10Y02P10/25
Inventor DAIMER, JOHANN
Owner SGL CARBON AG
Features
  • Generate Ideas
  • Intellectual Property
  • Life Sciences
  • Materials
  • Tech Scout
Why Patsnap Eureka
  • Unparalleled Data Quality
  • Higher Quality Content
  • 60% Fewer Hallucinations
Social media
Patsnap Eureka Blog
Learn More