Method for controlling an in-flight entertainment system

a technology for entertainment systems and in-flight entertainment, applied in the field of computer networks, can solve the problems of large hardware resources, labor-intensive and error-prone integration and testing, and severe restrictions on the selection of hardware and software components by the system provider, and achieve the effect of increasing hardware resources

Inactive Publication Date: 2007-06-07
THALES AVIONICS INC
View PDF19 Cites 33 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0011] According to an aspect of the invention, functions of the IFE system are performed after a network server request, for example, a Uniform Resource Locator (URL) call in the HTTP format, is sent from a web browser to a web server located on either the same or a different LRU. The web server runs a network server program, such as a Common Gateway Interface (CGI) script, using information in the network server request. The functions controlled include in-seat audio and video, flight attendant call, and overhead light switching. An important advantage of the present invention is that the addition or modification of functions in the IFE system is greatly simplified; each function may be implemented independently as a separate web site on the web server.
[0012] In an embodiment, the present invention provides a network protocol enabled IFE system. A user interface is provided within the system for enabling a user of the IFE system to generate an input signal. The user interface is connected to one or more LRUs within the system. A processor is located within an LRU, and is used within the system for processing the input signal in order to generate a control activation signal. The control activation signal is received by a network client, which is, in an embodiment, a web browser, and the network client generates a network server request from the control activation signal. A network server program, which is, in an embodiment, a CGI script running on a web server, such as an APACHE TOMCAT server, receives the network server request and controls a function of the IFE system by executing one or more instructions on one or more LRUs in the IFE system. The network server program may optionally return a network server response to the network client when the function is performed. Depending on whether the network client has a full display (i.e., if the network client is a web browser rather than a virtual web browser), the network server response may also be processed for display and displayed.
[0013] In different embodiments of the present invention, the functions of the IFE system controlled may be either simple or complex. A complex function of the IFE system is distribution of in-seat audio and video. In some embodiments or modes of operation, the in-seat audio and video distribution is interactive, or is controlled by a crew member through another user interface connected to the system, such as a management terminal. Other complex functions of the IFE system include accessing web pages on the Internet, sending and receiving electronic mail, playing computer games alone or with other users of the system, and checking flight information, such as estimated time of arrival, airspeed, and location. Simpler functions of the IFE system include functions traditionally associated with the passenger service system (PSS), such as flight attendant call buttons, or overhead light buttons. Other simple functions can include seat adjustment, and climate control. As will be recognized by those of ordinary skill in the art, other functions, both simple and complex, are possible.
[0014] An important advantage of the present invention is that a user interface within the IFE system does not need to have a display, and a user of the system of the present invention may generate an input signal for a network client without using a display. A user interface may be any mechanical device that can be used to produce an input signal for the system, such as a switch, button, or knob; in this embodiment, the user interface may not have a display. This advantage is accomplished through the use of a virtual web browser. As used hereinafter in a description of the present invention, a “virtual web browser” is a web browser that is capable of receiving a control activation and of producing a network server request, such as a URL call, is capable of receiving a network server response, and is capable of parsing the network server response, which might be a web page in HTML format, into data that is useful to software and hardware components on an LRU that is running the web browser; the virtual web browser does not, however, produce a graphical user interface (GUI), and a GUI is not necessary for a virtual web browser to carry out the steps in the method of the present invention associated with a network client. A user interface connected to a virtual web browser may provide a minimal display, such as a Light Emitting Diode (LED), or no display at all.
[0015] In another embodiment, the user interface may include a display and a keyboard. A laptop with a network client can serve as a user interface to the IFE system. (This embodiment is particularly advantageous for purposes of development, testing, and maintenance of an IFE system.) In other embodiments, the user interface could be a touch-screen display. In all of these embodiments, a network client, such as a typical web browser, can be used for performing the steps of the method associated with a network client. As will be recognized by those of ordinary skill in the art, a plurality of different kinds of user interfaces may be used to generate an input signal for the system.
[0016] In yet another embodiment of the present invention, communications between the network client and the network server follow TCP / IP protocols, such as the HTTP protocol. In other embodiments, communications within the system might follow a different network protocol, such as FTP, Simple Mail Transfer Protocol (SMTP), TELNET, or Wireless Application Protocol (WAP). As will be recognized by those of ordinary skill in the art, secure network protocols, such as Secure Sockets Shell (SSH) or Secure HTTP (HTTPS) could also be used within the system of the present invention.

Problems solved by technology

An IFE system provider is severely restricted in choosing particular hardware and software components for these reasons.
For even the simplest function to be performed, integration and testing is labor intensive and error-prone.
If additions or changes to the system are later desired, such changes are time consuming and require a high degree of familiarity with the details of the original system design.
Unfortunately, such efforts have resulted in a larger number of system errors and software bugs, and those software bugs have been more difficult to fix since the effects of changes to the software are more difficult to predict when the software runs on multiple types of hardware within the system.
Furthermore, due to the custom nature of the software in conventional IFE systems, as newer models of a system are developed, it becomes difficult for a system provider to support its legacy models.
Engineers who designed older models may have left the system provider, and new engineers may not have the time or ability to learn how the older system was implemented.
Diagnosing and fixing bugs in a system with a proprietary hardware and software architecture requires time and effort simply to learn how the system works.
Maintenance resources are often wasted teaching new engineers how a highly proprietary system works.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method for controlling an in-flight entertainment system
  • Method for controlling an in-flight entertainment system
  • Method for controlling an in-flight entertainment system

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0044] While the present invention is susceptible to various modifications and alternative forms, certain preferred embodiments are shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the description is not intended to limit the invention to the particular forms described; to the contrary, the description is intended to cover all modifications, alternatives, and equivalents falling within the spirit and scope of the invention defined by the appended claims.

[0045] The system and method of the present invention allow for a more flexible and modular IFE system by using network protocols for communication between LRUs within the system. Using network protocols improves efficiency of development efforts by reducing the probability of unintended conflicts between software loaded onto the plurality of LRUs within the system, and allows for easier upgrades and maintenance of software currently loaded within an IFE system. N...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A method for controlling an in-flight entertainment (IFE) system using network protocols, such as TCP / IP, HTTP, or FTP. Control of a plurality of functions, including in-seat and broadcast audio and video, overhead reading light control, and flight attendant call, are implemented using a network client, a network server, and a network server program, each communicating with network protocols. The network client may be visible or invisible to a user of the in-flight entertainment system, depending on whether a web browser or a virtual web browser is used as a network client. The software for each line replaceable unit (LRU) may be designed, redesigned, or tested independently from other components within the IFE system. Particular functions of the IFE system can be made available only to particular parts of the IFE system, allowing different levels of access to the IFE system for different passenger classes.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This patent application is a continuation of copending U.S. patent application Ser. No. 10 / 145,464, filed May 14, 2002, now allowed, herein incorporated by reference in its entirety.FIELD OF THE INVENTION [0002] The invention generally relates to computer networks, and more particularly relates to a system and method for controlling and operating an in-flight entertainment system using network protocols. BACKGROUND OF THE INVENTION [0003] Most commercial aircraft today are equipped with an IFE system. Typically, an IFE system includes a plurality of computers, which are connected to provide various functions. These computers include, for example, audio / video head-end equipment, area distribution boxes, passenger service systems (PSS), and seat electronic boxes. In the modular environment of an aircraft, each of these computers is referred to as a line replaceable unit (“LRU”) since most are “line fit” on an assembly line when an aircraf...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): H04N7/18H04N7/173H04L29/06H04L29/08H04N21/478
CPCH04L29/06H04N7/181H04N21/2146H04L69/329H04L67/12H04L67/02H04L67/025H04L9/40
Inventor BRADY, KENNETH A. JR.RAFELGHEM, DOMINIQUE VANNORTON, LYLE K.
Owner THALES AVIONICS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products