Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Gasket Assembly for Plate Heat Exchanger

a technology of heat exchanger and gasket, which is applied in the direction of reinforcement means, lighting and heating apparatus, laminated elements, etc., can solve the problems of affecting the actual flow of gaskets, and affecting the effect of heat exchanger performan

Inactive Publication Date: 2008-08-21
ALFA LAVAL CORP AB
View PDF13 Cites 28 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0010]The configuration of the gasket assembly results in great reduction of the so-called dead zones at the portholes. It provides instead a plain surface in the passage through the port channel and substantially avoids the risk of highly viscous liquids which may possibly contain particles or fibrelike products being caught. Should material nevertheless be caught, the plain surface of the gasket in combination with the configuration of the porthole helps to create conditions in which the material will be swept away. The gasket assembly according to the invention thus also reduces the risk of bacteria growth, which is a major and important advantage, particularly in areas of application in which the hygiene requirements are extra high.
[0011]According to an alternative embodiment of the invention, the gasket assembly is so configured that the gasket in the area around the ports comprises, along its side turned towards the porthole, opposite recesses on the upper and lower sides of the gasket. Such a design of the gasket makes it possible for the dead zones to be largely eliminated altogether. This is a major advantage in such areas as the food and drug industry, in which the hygiene requirements are very strict.
[0012]According to a further embodiment of the invention, the heat exchanger plate has about the port a circumferential ridge disposed on the outside of the cassette between the porthole and the gasket groove. According to an advantageous embodiment of the gasket assembly according to the invention, the ridge and the gasket cooperate in that the bead of the gasket abuts against the circumferential ridge about the porthole, thereby ensuring that the gasket is not dislodged from its position by the high pressures which occur during operation.
[0013]According to an advantageous embodiment of the gasket assembly according to the invention, the bead is so configured that the cassettes in combination with the gasket at the ports provide a substantially smooth channel through the plate package. In this embodiment, the plain surface of the gasket in cooperation with the configuration of the porthole helps to reduce the risk of material being caught. According to further advantageous embodiments of the gasket assembly according to the invention, the heat exchanger plates are permanently joined together in pairs by welding or brazing.

Problems solved by technology

When two or more heat exchanger plates are placed adjacent to one another, however, the nibs result in the formation of spaces in the actual flow passage, i.e. dead zones in which flowing liquid may become stationary and solid material contained in the liquid may be trapped and accumulate.
These protruding locking means may also make it more likely that fibres etc. are caught, especially at the portholes.
That solution does however involve manufacturing difficulties.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Gasket Assembly for Plate Heat Exchanger
  • Gasket Assembly for Plate Heat Exchanger
  • Gasket Assembly for Plate Heat Exchanger

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0022]FIGS. 1 and 2 depict a cassette 1 comprising two heat exchanger plates 2 permanently joined together and a gasket 3 according to the invention. The plates have at least four ports constituting inlet and outlet ports 4, 5, 6, 7 and a heat transfer surface 8 with ridges 9 and valleys 10. The cassette 1 may be made by welding or brazing, whereby the two plates 2 are joined together permanently along their periphery and around at least two of ports 4, 5.

[0023]Configuring the heat exchanger plates 2 in such a way that as few contact points as possible occur between two mutually adjacent cassettes prevents fibres and solid materials which may be contained in the fluid being caught in the space between the cassettes. According to the invention, the plates are also so designed that contact points for necessary mechanical support occur largely only on the inside, between two plates which are to be joined together to form a cassette, by opposite ridges abutting against one another. In c...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A gasket assembly of a plate heat exchanger, comprising at least one gasket (3) and a package of heat exchanger plates (2) which are provided with inlet and outlet ports (4, 5, 6, 7) which constitute channels through the package and between the heat exchanger plates, whereby the heat exchanger plates are permanently joined in pairs to constitute cassettes (1), the gasket is disposed between the cassettes in a groove (12) in the heat exchanger plates and delimits in combination with the cassettes in every second space between plates a first flow passage for a first fluid, and the cassettes delimit a second flow passage for a second fluid. The gasket in the area around the ports comprises along its side facing the porthole a circumferential protruding bead (14). The invention also relates to a plate heat exchanger comprising the gasket unit, a heat exchanger plate and a gasket according to the invention.

Description

FIELD OF THE INVENTION[0001]The present invention relates to a gasket assembly of a plate heat exchanger, comprising at least one gasket and a package of heat exchanger plates which are provided with inlet and outlet ports which constitute channels through the package and between the heat exchanger plates, whereby the heat exchanger plates are permanently joined in pairs to constitute cassettes, the gasket is disposed between the cassettes in a groove in the heat exchanger plates and delimits in combination with the cassettes, in every second space between plates, a first flow passage for a first fluid, and the cassettes delimit a second flow passage for a second fluid. The invention also relates to a plate heat exchanger comprising the gasket assembly, a heat exchanger plate and a gasket according to the invention.BACKGROUND TO THE INVENTION[0002]Food manufacture is typically characterised by the need to process and treat highly viscous products, e.g. concentrates for carbonated be...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): F28F3/10
CPCF28D9/005F28D2021/0098F28F2225/04F28F3/083F28F3/10F28F3/046
Inventor SVENSSON, MAGNUS
Owner ALFA LAVAL CORP AB
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products