Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Methods for optimal multi-channel assignments in vehicular ad-hoc networks

a vehicular ad-hoc network and multi-channel assignment technology, applied in the direction of network topologies, wireless commuication services, connection management, etc., can solve the problems of inability to use the same channel at a node for both receiving and transmitting information, computational effort, etc., to reduce the computational effort of the depth-first search method and improve the channel selection rule

Inactive Publication Date: 2008-11-13
TOYOTA INFORTECH CENT U S A +2
View PDF8 Cites 11 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0007]The present invention focuses on establishing a communications path among an ordered sequence of moving nodes, representing vehicles. The sequence of nodes can be viewed as a directed linear tree topology where a link interconnects a node only to its successor node in the ordered sequence. A channel is used to send information from one node to the next node on a wireless link. The set of available channels may differ from one node to the next node. Each of the available channels at a node can be used for receiving information from its predecessor node in the sequence or for transmitting information to its successor node in the sequence. However, the same channel cannot be used at a node for both receiving and transmitting information. Using information regarding the set of available channels at each of the nodes in the ordered sequence of nodes, the invention provides methods that determine an optimal sequence of channels assigned to the wireless links connecting the nodes. A sequence of channel assignments is called optimal if it establishes a communications path from the first node in the ordered sequence to the last one, or, if such a path does not exist, it establishes a communications path from the first node in the ordered sequence to the farthest node possible. The present invention describes three methods that find an optimal sequence of channel assignments. The first method uses a depth-first search starting from the first node in the sequence. The second method improves upon the channel selection rule in a node by using a “look ahead” scheme that may reduce the computational effort of the depth-first search method. The third method requires only a single pass through the sequence of nodes by identifying optimal channel assignments in subsequences of nodes without a need for backtracking, resulting in computational effort that is proportional to the number of nodes in the ordered sequence of nodes.

Problems solved by technology

However, the same channel cannot be used at a node for both receiving and transmitting information.
The third method requires only a single pass through the sequence of nodes by identifying optimal channel assignments in subsequences of nodes without a need for backtracking, resulting in computational effort that is proportional to the number of nodes in the ordered sequence of nodes.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Methods for optimal multi-channel assignments in vehicular ad-hoc networks
  • Methods for optimal multi-channel assignments in vehicular ad-hoc networks
  • Methods for optimal multi-channel assignments in vehicular ad-hoc networks

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0013]Referring now to the figures and FIG. 1 in particular, there is shown an example 100 of an ordered sequence of five nodes 101-105, also labeled as nodes 1-5. The nodes represent moving vehicles and the links 106-109 represent wireless links interconnecting the nodes. For example, link 106 connects node 1 to node 2, link 107 connects node 2 to node 3, and so forth. Note that the network comprising the nodes and links can be viewed as a directed linear tree. Each node has a set of channels available for receiving or transmitting information where the term channel is used as a logical entity. It may represent a frequency band (under FDMA), an orthogonal code (under CDMA), and the like. The set of available channels may differ from one node to the next due to external interferences, other ongoing communications that involve some of these nodes, different equipment used at the nodes, and so forth. For example, node 1 (101) can use channels 1 and 2, as depicted by the set S1={1, 2},...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A communications path is established among an ordered sequence of moving nodes, representing vehicles. Available channels may differ from one node to the next node and a node cannot use the same channel for both receiving and transmitting information. Three methods are described that provide an optimal sequence of channel assignments between the nodes. A sequence of channel assignments is called optimal if it establishes a communications path from the first node in the sequence to the last node in the sequence, or, if such a path does not exist, from the first node to the farthest node possible in the sequence. The first method uses a depth-first search starting from the first node in the sequence. The second method uses a “look ahead” scheme in the depth-first search method. The third method requires only a single pass through the sequence of nodes by identifying optimal channel assignments in subsequences of nodes without a need for backtracking.

Description

FIELD OF INVENTION[0001]The present invention relates to channel assignments in mobile ad-hoc networks and more specifically, the invention concerns assignment of channels in ad-hoc vehicular networks comprising an ordered sequence of moving vehicles.BACKGROUND OF THE INVENTION[0002]A mobile ad-hoc network (MANET) is formed by multiple moving nodes equipped with wireless transceivers. The mobile nodes communicate with each other through multi-hop wireless links, wherein every node can transmit and receive information. Mobile ad-hoc networks have become increasingly important in areas where deployment of communications infrastructure is difficult. Such networks are used for communications in battle fields, natural disasters, fleets on the ocean, and so forth Numerous papers have been published on this topic. For example, C. Xu, K. Liu, Y. Yuan, and G. Liu, “A Novel Multi-Channel Based Framework for Wireless EEE 802.11 Ad Hoc Networks”, Asian Journal of Information Technology, 5, 44-4...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): H04Q7/00H04W40/04
CPCH04L45/128H04W40/04H04W72/04H04W76/02H04W84/18H04W76/10
Inventor LUSS, HANANCHEN, WAIHIKITA, TOSHIROONISHI, RYOKICHI
Owner TOYOTA INFORTECH CENT U S A
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products