Methods for the assessment of neuromuscular function by F-wave latency
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
Embodiment Construction
[0044]The present invention offers a detection and monitoring system for peripheral neurological conditions, such as Carpal Tunnel Syndrome, diabetic neuropathy, and toxic neuropathies, that is less time consuming, less expensive, and more available to a wider range of the general public than existing systems. One of the most effective ways to detect peripheral neuropathies is to monitor the response of a motor nerve to stimulation.
[0045]A motor nerve response signal typically consists of two components, namely the M-wave component and the F-wave component. The M-wave component is generally quantified by the distal motor latency (DML). The DML is generally defined as the amount of time that elapses between the start of the stimulus (i.e., time=0) and the initial negative deflection of the M-wave component of the muscle response signal (i.e., myoelectric potential). The F-wave component of the muscle response signal, on the other hand, is typically quantified by the minimum or median...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com