Field plate trench mosfet transistor with graded dielectric liner thickness
a dielectric liner and trench mosfet technology, applied in the field of semiconductor devices, can solve the problems of power dissipation and/or low area consumption during mosfet operation
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
Embodiment Construction
[0011]A trench field plate MOSFET includes a number of field plates formed within a drain extension region. The disclosure benefits from the recognition that operating characteristics of a trench field plate MOSFET may be improved by providing a dielectric between the field plates and the drain extension region that has a variable thickness therebetween. The variable thickness is expected to provide a flatter potential distribution in the direction of carrier flow during operation, resulting in increased blocking voltage, e.g.
[0012]FIG. 1 illustrates a portion of a prior art trench field plate power MOSFET 100 (hereinafter referred to as the MOSFET 100). Coordinate axes are shown for reference. The illustrated portion includes a substrate 105 with a drain 110 and a drain extension 115 located thereover. A body 120 (sometimes referred to as a backgate) is located over the extension 115, with a source 125 formed over the body 120. The drain 110, the extension 115 and the source 125 ma...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com