Systems, methods, and computer-readable media for modeling complex wellbores in field-scale reservoir simulation

Inactive Publication Date: 2014-08-21
SAUDI ARABIAN OIL CO
View PDF8 Cites 47 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0006]Various embodiments of systems, methods, and computer-readable media are provided for a near-well unstructured grid model builder for generating a full-field unstructured grid for reservoir simulation. In some embodiments, a method for generating a near-well unstructured grid is provided. The method includes receiving, by one or more processors, input data and determining, by one or more processors, a field polygon based on the input data. The input data includes a structured geocellular model having a well or a structured reservoir simulation having a well or a structured reservoir simulation having a well and well trajectory data and completion data for the well. The method further includes determining, by one or more processors, a reservoir polygon having a region of interest containing the well and generating, by one or more processors, a plurality of grid points. The plurality of grid points include a plurality of well grid points based on a first grid size and a plurality of other grid points outside of the region of interest based on a second grid size, the second grid size coarser than the first grid size. Additionally, the method includes performing, by one or more processors, a Delaunay triangulation based on the generated grid points and generating, by one or more processors, a Voronoi grid based on the Delaunay triangulation. The method also includes generating, by one or more processors, a near-well unstructured grid based on the Voronoi grid. Generating the near-well unstructured grid includes generating a geometry of the near-well unstructured grid, generating properties of the near-well unstructured grid, and generating perforation of the near-well unstructured grid.
[0007]In another embodiment, a non-transitory tangible computer-readable storage medium having executable computer code stored thereon for generating a near-well unstructured grid is provided. The computer code has a set of instructions that causes one or more processors to perform the following: receiving, by one or more processors, input data and determining, by one or more processors, a field polygon based on the input data. The input data includes a structured geocellular model having a well or a structured reservoir simulation having a well or a structured reservoir simulation having a well and well trajectory data and completion data for the well. The computer code further includes a set of instructions that causes one or more processors to perform the following: determining, by one or more processors, a reservoir polygon having a region of interest containing the well and generating, by one or more processors, a plurality of grid points. The plurality of grid points include a plurality of well grid points based on a first grid size and a plurality of other grid points outside of the region of interest based on a second grid size, the second grid size coarser than the first grid size. Additionally, the computer code further includes a set of instructions that causes one or more processors to perform the following: includes performing, by one or more processors, a Delaunay triangulation based on the generated grid points and generating, by one or more processors, a Voronoi grid based on the Delaunay triangulation. The computer code further includes a set of instructions that causes one or more processors to perform the following: also includes generating, by one or more processors, a near-well unstructured grid based on the Voronoi grid. Generating the near-well unstructured grid includes generating a geometry of the near-well unstructured grid, generating properties of the near-well unstructured grid, and generating perforation of the near-well unstructured grid.
[0008]In another embodiment, a

Problems solved by technology

In order to enhance production and other processes in these reservoirs, the accuracy of flow modeling and other techniques has presented numerous challenges and increased difficulty.
Moreover

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Systems, methods, and computer-readable media for modeling complex wellbores in field-scale reservoir simulation
  • Systems, methods, and computer-readable media for modeling complex wellbores in field-scale reservoir simulation
  • Systems, methods, and computer-readable media for modeling complex wellbores in field-scale reservoir simulation

Examples

Experimental program
Comparison scheme
Effect test

Example

[0028]While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. The drawings may not be to scale. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but to the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.

DETAILED DESCRIPTION

[0029]As described further below, systems, methods, and computer-readable media are provided for a near-well unstructured grid model builder for generating a near-well unstructured grid for full-field reservoir simulation in accordance with an embodiment of the present invention. As described further below, the near-well unstructured grid model builder may include a workflow interface and...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

Systems, methods, and computer-readable media are provided for a near-well unstructured grid model builder for generating a full-field unstructured grid for reservoir simulation. As described further below, the near-well unstructured grid model builder may include a workflow interface and a parallel unstructured grid model builder. The inputs to the near-well unstructured grid model builder may include existing well trajectory and completion data, future well data, a geological model, a structured grid simulation model, or any combination thereof. The near-well unstructured grid model builder may output a near-well unstructured grid having a specified grid resolution in regions of interest that include a well.

Description

PRIORITY CLAIM[0001]This application claims priority to U.S. Provisional Patent Application No. 61 / 766,056 filed on Feb. 18, 2013, entitled “Systems Methods, and Computer-Readable Media for Modeling Complex Wellbores in Field-Scale Reservoir Simulation,” the disclosure of which is hereby incorporated by reference in its entirety.BACKGROUND OF THE INVENTION[0002]1. Field of the Invention[0003]This invention relates generally to the computerized simulation of hydrocarbon reservoirs and, more particularly, to computerized simulation multiphase multicomponent flow and transport processes involving complex well geometry such as complex maximum reservoirs contact (MRC) wells. These wells can be densely populated within the reservoirs.[0004]2. Description of the Related Art[0005]Oil, gas, and other natural resources are used for numerous energy and material purposes. A reservoir in a geologic body or other formation may contain oil, natural gas, water, and several constituent compounds. Re...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): G01V11/00
CPCG01V11/00E21B41/00G01V2210/624G01V99/005
Inventor FUNG, LARRY SIU-KUENDING, XIANG YANG
Owner SAUDI ARABIAN OIL CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products