Fine-grained high carbide cast iron alloys

a high carbide, cast iron alloy technology, applied in the field of cast iron alloys, can solve problems such as done at the expense of toughness, and achieve the effect of increasing wear resistance and similar toughness levels

Inactive Publication Date: 2016-10-06
SCOPERTA INC
View PDF2 Cites 17 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0008]In some embodiments, computational metallurgy can be used to explore alloy compositional ranges where the total carbide content can be increased without introducing coarse carbide structures known to embrittle the material. When considering the Fe—Cr—C system, the thermodynamic limit for hypoeutectic carbide volume fraction can be 35-40% (or about 35-about 40%). This disclosure describes embodiments of alloys which can meet a set of thermodynamic criteria which can exceed the 40% (or about 40%) carbide content limit, but may not introduce the formation of hypereutectic M7C3, M23C6 or generally any Fe,Cr-rich type carbides. The result is a microstructure which can have a very high level, >40% mole fraction (or > about 40% mole fraction) as defined by thermodynamic models, of fine-grained carbides. As such, this new class of materials can be defined as fine-grained high carbide content cast irons. The utility of such a material can be an increased wear resistance, while maintaining similar levels of toughness to hypoeutectic cast irons.

Problems solved by technology

However, this is done at the expense of toughness.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Fine-grained high carbide cast iron alloys
  • Fine-grained high carbide cast iron alloys
  • Fine-grained high carbide cast iron alloys

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0056]Disclosed herein is an alloy material, such as an alloy containing Fe, C and Cr, having high carbide contents, as well as a method of increasing carbide content in an alloy. Generally as either Cr or C is increased, the alloy is pushed towards increased amounts of primary, or eutectic, chromium carbide fractions, so embodiments of the disclosed alloys may fall within the group known as chromium white irons. In some embodiments, the disclosed alloys can be “iron based,” indicating that they have a composition that is predominantly iron, e.g., at least 50 wt. % iron. Also disclosed herein are different criteria that can be used for producing a high carbide content alloy. Thermodynamic, microstructural, and compositional criteria could be used to produce such an alloy. In some embodiments, only one of the criterial can be used to form the alloy, and in some embodiments multiple criteria can be used to form the alloy. As disclosed herein, the term alloy can refer to the chemical c...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
melt temperatureaaaaaaaaaa
melt temperatureaaaaaaaaaa
melt temperatureaaaaaaaaaa
Login to view more

Abstract

Embodiments of alloys having high, fine-grained carbide content, and methods of manufacturing such alloys. The alloys can be determined through the use of thermodynamic, microstructural, and compositional criterial in order to create a high strength and high toughness alloy. In some embodiments, the alloys can be used as a wear resistant component.

Description

INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS[0001]Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.BACKGROUND[0002]1. Field[0003]The disclosure relates generally to cast iron alloys used in wear-prone environments and which are resistant to wear.[0004]2. Description of the Related Art[0005]The alloy family known as chromium white irons or chromium white cast irons can refer to alloys containing Fe, C, and Cr which can form eutectic chromium carbides. For example, alloys having chromium levels in the range from 15-30 wt. % (or about 15 to about 30 wt. %) and having carbon levels in the range of 1-3 wt. % (or about 1 to about 3 wt. %) can form such chromium white irons. For chromium white irons, formation of primary chromium carbides is typically avoided which can occur as either Cr or C content is increased. For man...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): C22C37/08B22D25/06C22C37/06
CPCC22C37/08B22D25/06C22C37/06
Inventor CHENEY, JUSTIN LEEEIBL, CAMERON
Owner SCOPERTA INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products