Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

A Face Feature Extraction and Classification Method

A classification method and face feature technology, applied in the field of image processing, can solve the problem of face recognition not reaching the expected effect, etc., and achieve the effects of improving speed, strong feature discrimination, and strong feature expressiveness.

Active Publication Date: 2017-10-27
ZHEJIANG UNIV
View PDF5 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

However, the actual face recognition attendance system will also face some challenges. Affected by factors such as illumination, occlusion, scale or movement of the face area, the current face recognition has not yet achieved the expected effect

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • A Face Feature Extraction and Classification Method
  • A Face Feature Extraction and Classification Method
  • A Face Feature Extraction and Classification Method

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0021] The implementation process of the present invention will be described in detail below.

[0022] The present invention provides a kind of human face feature extraction and classification method, comprises the following steps:

[0023] (1) Read in face images: read in standard face images from the face training database;

[0024] (2) The 2D-PCA method will be used to reduce the feature dimension of the read face image, that is, the high-dimensional image matrix is ​​mapped to the projection subspace of 2D-PCA, and converted into a low-dimensional image matrix;

[0025] (3) Convert the low-dimensional image matrix obtained by dimensionality reduction in step (2) into a one-dimensional column vector;

[0026] (4) According to the one-dimensional column vector in step (3), obtain the intra-class scatter matrix S of the training set W and between-class scatter matrix S B , respectively for S W and S B Do eigenvalue decomposition, even if S W and S B Represented by its ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention relates to a method for extracting and classifying human face features. The method comprises the following steps: using 2D-PCA method to perform feature dimensionality reduction on human face images, converting a high-dimensional image matrix into a low-dimensional image matrix; converting the low-dimensional The image matrix is ​​converted into a one-dimensional column vector; according to the one-dimensional column vector of the training set image, the intra-class scatter matrix SW and the inter-class scatter matrix SB of the training set are obtained, and the eigenvalue decomposition of SW and SB is performed respectively: use Dα Estimated by Dβ estimation can be obtained S ^ W - 1 = U W D α 2 U W T , S ^ B - 1 = U B D β 2 U B T ; Calculate the column space W1 and column space W2 respectively, and obtain the optimal projection space W=[W1,W2] of the feature extraction algorithm based on 2D-PCA two-level LDA; project the low-dimensional image matrix in (1) In the optimal projection space W, the feature vector of the image is obtained; the feature vector obtained in (6) is used for classifier training with the SVM+NDA model, and the final face classifier is obtained.

Description

technical field [0001] The invention belongs to the field of image processing, in particular to a face feature extraction and classification method. Background technique [0002] The identification methods of the traditional time attendance system are mainly attendance card and radio frequency card. Due to the separability of the identification person, it is easy to cause the phenomenon of punching the card. Therefore, biometric identification technology has gradually become the main means of identification. At present, the fingerprint time attendance system using biometric identification technology has been widely used. However, the fingerprint attendance system needs special image acquisition equipment to acquire fingerprints, and the image acquisition is touch or contact, which will bring discomfort to users. Moreover, there are many groups or individuals whose fingerprint features are so few that it is difficult to image; when users use fingerprint collection equipment,...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(China)
IPC IPC(8): G06K9/00G06K9/46G06K9/62
Inventor 王友钊黄静潘芬兰
Owner ZHEJIANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products