Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Experiment device and method for measuring Young modulus of metal wire according to resonance

A technology of Young's modulus and experimental equipment, applied in the direction of applying repeated force/pulsation force to test the strength of materials, etc., can solve problems such as data error, inaccurate tension, single principle, etc., to enhance the ability to solve problems, observe The effect of convenient measurement and intuitive experimental phenomena

Inactive Publication Date: 2016-10-26
田凯
View PDF0 Cites 3 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0005] First, the Young's modulus of metal wire is usually measured by static stretching method, and the principle is relatively simple
[0006] Second, according to the optical lever amplification principle, the tiny elongation of the metal wire is measured through the amplification system composed of optical levers, telescopes and rulers. Although the method is ingenious, the principle is abstract and difficult to understand. The adjustment of the telescope is relatively difficult. Notes There are many, and it is very easy to get tired and make mistakes in the data, which will affect the accuracy of the measurement results.
[0007] Third, weights are generally used to apply tension to the wire, and the nominal mass of the weights is used to calculate the tension inaccurately, thus affecting the accuracy of the experimental results

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Experiment device and method for measuring Young modulus of metal wire according to resonance
  • Experiment device and method for measuring Young modulus of metal wire according to resonance
  • Experiment device and method for measuring Young modulus of metal wire according to resonance

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0038] In the figure, a support 4 is provided on the support base 7, a crossbeam 1 is provided at the upper end of the support 4, an upper chuck 2 and a vibrator 3 are arranged in the middle of the crossbeam 1, and one end of a metal wire 15 is connected with the upper chuck 2 and the vibrator 3, The other end links to each other with the lower chuck 16, and the lower chuck 16 is fixed with a metal frame 17, and an iron block 18 is fixed inside the metal frame 17. The exciter 3 is connected to the sinusoidal signal source 8 through the interface 14 between the exciter and the sinusoidal signal source, and the sinusoidal signal voltage amplitude output by the sinusoidal signal source 8 can be continuously adjusted by the sinusoidal signal voltage amplitude adjustment knob 13, and can be adjusted at The sinusoidal signal voltage amplitude is displayed on the display screen 12; the sinusoidal signal frequency can be continuously adjusted through the sinusoidal signal frequency coa...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention discloses an experiment device and method for measuring the Young modulus of a metal wire according to resonance principle, relates to a Young modulus measuring device and method, and aims to solve the problem that in the conventional university physical experiments, the experiment principle for measuring metal wire Young modulus is single and abstract, and the telescope is hard to adjust. The device comprises a crossbeam, which is arranged on the upper end of a support. An upper clamping head and a vibration generator are arranged on the middle of the crossbeam. Two ends of a metal wire are respectively connected to the vibration generator and a lower clamping head. The lower clamping head and a metal frame are fixed together. The vibration generator is connected to a signal source. A measuring device is composed of a Hall element, a measurement controller, a voltage amplifying device, and an oscilloscope. The sinusoidal signals are converted into mechanical vibration by the vibration generator to force a metal wire spring oscillator to vibrate, the vibration is converted into electric signals by the Hall element, the signal frequency is adjusted, when the waveform amplitude is the largest, the inherent frequency of the metal wire spring oscillator is obtained, and the inherent frequency is substituted into a formula to calculate the Young modulus of the metal wire. The provided method is suitable for measuring the Young modulus of a metal wire.

Description

technical field [0001] The invention relates to a university physics experiment device, in particular to an experiment device and method for measuring the Young's modulus of metal wires based on the resonance principle. Background technique [0002] The change in shape of a solid under the action of an external force is called deformation. It can be divided into elastic deformation and normative deformation. The deformation that an object can completely return to its original shape after the external force is removed is called elastic deformation. If the external force applied to the object is too large, so that after the external force is removed, the object cannot completely return to its original shape, leaving residual deformation, which is called normative deformation. In this experiment, only elastic deformation is studied. Therefore, the magnitude of the external force should be controlled to ensure that the object can return to its original shape after the externa...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(China)
IPC IPC(8): G01N3/32
CPCG01N3/32
Inventor 田凯李慧高景霞刘申晓张显恒
Owner 田凯
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products