Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Fault Diagnosis Method of Photovoltaic Array Based on Differential Evolutionary Random Forest Classifier

A random forest and fault diagnosis technology, applied in the fields of instruments, computer parts, data processing applications, etc., can solve problems such as no photovoltaic array fault diagnosis method, and achieve the effect of fault detection and classification, and accelerated classification accuracy.

Active Publication Date: 2021-04-27
FUZHOU UNIV
View PDF5 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0005] At present, the photovoltaic array fault diagnosis method based on the differential evolution random forest classifier proposed by the present invention has not yet been seen in the published literature and patents

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Fault Diagnosis Method of Photovoltaic Array Based on Differential Evolutionary Random Forest Classifier
  • Fault Diagnosis Method of Photovoltaic Array Based on Differential Evolutionary Random Forest Classifier
  • Fault Diagnosis Method of Photovoltaic Array Based on Differential Evolutionary Random Forest Classifier

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0025] The technical solution of the present invention will be specifically described below in conjunction with the accompanying drawings.

[0026] The present invention provides a photovoltaic array fault diagnosis method based on differential evolution random forest classifier, the flow chart is as follows figure 1 shown. figure 2 It is the physical picture of the experimental platform used to obtain sample data in this embodiment, in which the photovoltaic array uses 18 solar modules of model GL-M100, which are divided into 3 strings, and each string uses 6 modules connected in series to form a 6×3 series-parallel connection.

[0027] The present invention provides a photovoltaic array fault diagnosis method based on a differential evolutionary random forest classifier. Various preset working conditions in this embodiment include: normal operation; string-level line-line failure, that is, the number of short-circuit components in the string is 1 block and 2 blocks; array...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention relates to a photovoltaic array fault diagnosis method based on a differential evolution random forest classifier. The method: first, collect the voltage of the photovoltaic array and the current of each photovoltaic string under various working conditions, and identify each working condition with different identifiers; secondly, use the classification misjudgment rate based on the out-of-bag data The mean size determines the number range of decision trees in the random forest model; then, the differential evolution algorithm is used to globally optimize the number range of its decision trees to obtain the optimal number of decision trees; then, the calculated optimal number of decision trees The value is brought into the random forest classifier and the samples are trained to obtain the random forest fault diagnosis training model; finally, the fault detection and classification of the photovoltaic array is performed using the training model. The method of the invention can greatly speed up the model training speed while ensuring the optimal model classification accuracy rate, thereby more quickly and accurately realizing the fault detection and classification of the photovoltaic power generation array.

Description

technical field [0001] The invention relates to a photovoltaic array fault detection and classification technology, in particular to a photovoltaic array fault diagnosis method based on a differential evolution random forest classifier. Background technique [0002] Large-scale photovoltaic power plants are an important way to utilize new energy. The core photovoltaic power generation arrays are affected by the external natural environment and self-aging problems during operation, and some failures will inevitably occur. The photovoltaic system is relatively large, and once a failure occurs, it will cause great damage to the entire photovoltaic power generation system. If these faults are not detected and eliminated in time, it will directly affect the normal operation of the photovoltaic power generation system, and even burn out the battery components and cause a fire in severe cases. Therefore, realizing the fault diagnosis of the photovoltaic system is of great signific...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(China)
IPC IPC(8): G06K9/62G06Q50/06
CPCG06Q50/06G06F18/24323G06F18/214
Inventor 陈志聪韩付昌吴丽君俞金玲林培杰程树英郑茜颖
Owner FUZHOU UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products