Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

315results about How to "Improve classification results" patented technology

Sound-Directed or Behavior-Directed Method and System for Authenticating a User and Executing a Transaction

A method for executing a transaction. A first processing device senses a sound, an action, or a behavior from a source and receives identification information from the source, which may be related to or a portion of the sound, action or behavior. The first processing device processes one or more of the sound, the action, and the behavior and the identification information to identify the transaction and to identify the source. Executing the transaction if the source is an authorized source.
Owner:GARMIN INT

Method for the real-time identification of seizures in an electroencephalogram (EEG) signal

ActiveUS20120101401A1Highly accurate real-time seizure identificationAccurate classificationElectroencephalographyMedical data miningFeature vectorAlgorithm
The present invention relates to a method for the real-time identification of seizures in an Electroencephalogram (EEG) signal. The method provides for patient-independent seizure identification by use of a multi-patient trained generic Support Vector Machine (SVM) classifier. The SVM classifier is operates on a large feature vector combining features from a wide variety of signal processing and analysis techniques. The method operates sufficiently accurately to be suitable for use in a clinical environment. The method may also be combined with additional classifiers, such a Gaussian Mixture Model (GMM) classifier, for improved robustness, and one or more dynamic classifiers such as an SVM using sequential kernels for improved temporal analysis of the EEG signal.
Owner:NATIONAL UNIVERSITY OF IRELAND

System and method for automated part-number mapping

Automated mapping of part numbers associated with parts in a bill of materials (BOM) submitted by a BOM originator to internal part numbers assigned to those parts by a BOM receiver is performed by one or more computers connected to one or more networks through one or more network interfaces. A first receive component receives one or more data sets containing historical data on bills of materials received in the past by the BOM receiver. A second receive component receives one or more data sets containing known mappings between internal part numbers used by the BOM receiver, and part numbers used by various BOM originators. A third receive component receives one or more data sets containing information of various parameters and their values describing the parts to which the BOM receiver has assigned internal part numbers. A fourth receive component receives one or more methods of automatically learning models for predicting internal part numbers from the above mentioned historical BOM data, mapping data and part parametric data. A learning component learns the models from the data. A fifth receive component receives a BOM from a requesting process. The BOM has one or more parts with a missing internal part number. A mapping component applies the learned models to the received BOM to automatically determine internal part numbers for all unmapped BOM originator part numbers. A release process assigns internal part numbers to all unmapped parts in the BOM and releases the BOM to the requesting process.
Owner:IBM CORP

Semantic segmentation method based on multi-scale convolutional neural networks (CNNs)

The embodiment of the invention discloses a semantic segmentation method based on multi-scale convolutional neural networks (CNNs). The method includes: acquiring intra-modal features in high-resolution aerial-images and LiDAR (Light Detection And Ranging) point cloud data; carrying out inter-modal feature extraction and classification on the basis of the multi-scale convolutional neural networks;and using a multi-scale segmentation method to extract ground object boundaries, eliminate salt and pepper effects, and optimize classification results. By implementing the example of the invention,a method of combining the multi-scale CNNs and multi-scale segmentation (MRS) post-processing is used for semantic segmentation of the high-resolution aerial-images and the LiDAR point cloud data.
Owner:孙颖 +2

Classifying nuclei in histology images

Disclosed, among other things, is a computer device and computer-implemented method of classifying cells within an image of a tissue sample comprising providing the image of the tissue sample as input; computing nuclear feature metrics from features of nuclei within the image; computing contextual information metrics based on nuclei of interest with the image; classifying the cells within the image using a combination of the nuclear feature metrics and contextual information metrics.
Owner:VENTANA MEDICAL SYST INC

Contextually propagating semantic knowledge over large datasets

A method for operation of a search and recommendation engine via an internet website is described. The website operates on a server computer system and includes accepting text of a product review or a service review, initializing a set of words with seed words, predicting meanings of the words in the set of words based on confidence scores inferred from a graph and using the meanings of the words to make a recommendation for the product or the service that was a subject of the product review or the service review. The search and recommendation engine is also described.
Owner:INTERDIGITAL MADISON PATENT HLDG

Polarization SAR image classification based on CNN and SVM

The invention discloses a polarization SAR image classification method based on CNN and SVM, and mainly aims to solve the problem of the existing polarization SAR image classification method that the classification precision is low. The method comprises the steps as follows: (1) inputting a to-be-classified polarization SAR image after filtering; extracting and normalizing the original feature of each pixel point based on a polarization coherence matrix and by taking the neighborhood into consideration; training an AE network, and obtaining the parameter of a CNN convolution layer through softmax fine-tuning; setting a CNN pooling layer as average pooling, and determining the parameter of the CNN pooling layer; and sending the features of CNN learning to an SVM for classification to obtain the classification result of the polarization SAR image. Compared with the existing methods, the spatial correlation of the image is fully considered, a new neighborhood processing method is proposed based on CNN, features more conductive to polarization SAR image classification can be extracted, the classification accuracy is obviously improved, and the method can be used for polarization SAR image surface feature classification and object identification.
Owner:XIDIAN UNIV

Emotional and/or psychiatric state detection

ActiveUS20130166291A1Rapid quantitative assessmentImprove accurate classificationMedical data miningSpeech recognitionFrequency spectrumPsychological status
Mental state of a person is classified in an automated manner by analysing natural speech of the person. A glottal waveform is extracted from a natural speech signal. Pre-determined parameters defining at least one diagnostic class of a class model are retrieved, the parameters determined from selected training glottal waveform features. The selected glottal waveform features are extracted from the signal. Current mental state of the person is classified by comparing extracted glottal waveform features with the parameters and class model. Feature extraction from a glottal waveform or other natural speech signal may involve determining spectral amplitudes of the signal, setting spectral amplitudes below a pre-defined threshold to zero and, for each of a plurality of sub bands, determining an area under the thresholded spectral amplitudes, and deriving signal feature parameters from the determined areas in accordance with a diagnostic class model.
Owner:RMIT UNIVERSITY

Combination feature vector and deep learning based sentiment classification method and device

The invention discloses a combination feature vector and deep learning based sentiment classification method and device. The combination feature vector and deep learning based sentiment classification method comprises the steps of obtaining multiple comment texts from internet; carrying out word segmentation for the multiple comment texts so as to obtain each sub-constituent words; obtaining a lexical feature of a sentence; extracting a syntactic feature of each comment text; obtaining a combination feature vector of each user comment text based on the lexical features and the syntactic features; and training a deep learning model based on the combination feature vector and further obtaining an optimal classification result through the deep learning model. According to the combination feature vector and deep learning based sentiment classification method and device, the comment text can be subjected to sentiment classification through the combination feature vector and the deep learning, the optimal classification result can be accordingly obtained, the classification precision is improved, and emotional tendency of a user in the text can be better identified; and the combination feature vector and deep learning based sentiment classification method is simple and convenient.
Owner:TSINGHUA UNIV

Combination-type text classification method based on deep learning

The invention relates to a combination-type text classification method based on deep learning. The method includes the following steps: preprocessing to-be-classified text; using the preprocessed textto obtain feature extraction results, which correspond to all deep learning models, through the different depth learning models; combining all the feature extraction results through a fully connectedlayer to obtain a combined feature vector; and using the combined feature vector as input to carry out classification recognition to obtain a class to which the text belongs. Compared with the priorart, the method has the advantages of lower requirements on training-corpus quality, high transplantability and expandability, a still better effect in a case of more classification classes and the like.
Owner:TONGJI UNIV

Method and device for Hyperspectral image semi-supervised classification

ActiveCN103150580AAvoid choosing difficult questionsAvoid misclassification problemsCharacter and pattern recognitionClassification methodsHyperspectral image classification
The invention relates to a method and a device for remote-sensed hyperspectral image classification. The method comprises the following steps of step 1: carrying out spectral angle weighted clustering based on kernel function vague C mean value on the hyperspectral image to obtain clustered indication characteristics; step 2: carrying out support vector machine (SVM) semi-supervised classification on the hyperspectral image to obtain a first classified image Image 1, and carrying out the SVM semi-supervised classification on the clustered indication characteristics to obtain a second calssified image Image 2; and step 3: establishing a clustering and SVM cooperation framework, inserting classification results of the Image 1 and the Image 2 into the clustering and SVM cooperation framework to be cooperatively analyzed so as to obtain a final hyperspectral classified image. The device comprises a clustering module, a classification module and a cooperative analysis module. The method and device for the hyperspectral image semi-supervised classification are feasible, capable of performing high-precise clustering and SVM-cooperative.
Owner:WUHAN UNIV

Method and apparatus for identifying potential recipients

A method for identifying potential recipients of a message wherein the message comprises a text message and wherein the message is in electronic form is—regarding a possibly simple usability and user-friendliness—designed and further developed in such a way that the content of the message undergoes a text analysis and based on the result of the text analysis a potential recipient or a group of potential recipients are identified from a list of recipients.
Owner:NEC CORP

Passenger going-out behavior analysis method based on subway card-swiping data

The invention discloses a passenger going-out behavior analysis method based on subway card-swiping data. The passenger going-out behavior analysis method is characterized in that the subway going-out behaviors can be classified, and the classification results have the obvious and easy-to-observe characteristics, and can be widely used for the intelligent traffic passenger going-out behavior analysis. The passenger going-out behavior analysis method is characterized in that S1, data pre-processing can be carried out; original data can be merged and organized, and passenger going-out records can be acquired; every passenger going-out record comprises a passenger going-out entrance station, an entrance card-swiping time, an exit station, and an exit card-swiping time; S2, characteristics can be extracted; according to the passenger going-out records, the passenger entrance temporal clustering can be carried out to acquire the fixed going-out days of every passenger, and then the passenger going-out characteristics can be acquired after the extraction of the passenger going-out characteristics; S3, passengers can be clustered; the passenger clustering can be carried out according to the passenger going-out characteristics, and the passenger clustering result can be acquired and analyzed.
Owner:BEIJING UNIV OF TECH

Polarization SAR image classification based on RBM and SVM

The invention discloses a polarization SAR image classification method based on RBM and SVM, mainly solving the problem of the existing polarization SAR image classification method that the classification precision is low. The method comprises the steps as follows: (1) inputting the polarization SAR image to be classified, having delicate polarization Lee filtering operation; (2) resolving and extracting original feature of each pixel point and integrating based on the polarization coherence matrix, polarization covariance matrix and Cloude; (3) initializing and training RBM to obtain the related parameter; (4) classifying by using SVM according to the feature learned by the RBM to obtain the classification result. Compared with the existing method, the space dependency of the image is totally considered and the feature in favour of classifying polarization SAR image can be extracted, the polarization SAR image classification precision is obviously raised, the method can be used for terrain classification and object identification for polarization SAR image.
Owner:XIDIAN UNIV

Electroencephalogram feature extraction method based on CSP and R-CSP algorithms

The invention relates to an electroencephalogram feature extraction method based on CSP and R-CSP algorithms. According to the electroencephalogram feature extraction method, when a traditional CSP algorithm is used for extracting small sample electroencephalograms, covariance estimation of the traditional CSP algorithm will generate a larger error; according to the electroencephalogram feature extraction method, the traditional CSP algorithm is improved, and the regularization CSP algorithm R-CSP is put forward. Firstly, a small wave threshold denoising algorithm is used for conducting de-noising processing; secondly, covariance matrixes of five experimenters are solved, one target experimenter is selected, and the rest of the experimenters are auxiliary experimenters, an optimal spatial filter is constructed through selection of regularization parameters, and feature vectors are accordingly extracted; and finally, a genetic algorithm is used for optimizing a support vector machine classifier, and the correct rate of the classification result is further improved. The final classification result shows that the R-CSP algorithm is better in correct rate of the classification result compared with a traditional CSP algorithm.
Owner:西安慧脑智能科技有限公司

Depth generating method based on background difference sectional drawing and sparse optical flow method

The invention relates to a depth generating method based on a background difference sectional drawing and a sparse optical flow method. The depth generating method comprises the following steps: selecting suitable colour space and establishing a colour model; establishing a background model fast and effectively so as to exactly describe the background of a video sequence; classifying each pixel point according to the background model; optimizing the classified result of the pixel; evaluating an optical flow value of a feature point by the sparse optical flow method; evaluating the optical flow values of all the points by interpolation; and obtaining a depth value by the optical values. The invention has the advantages as follows: the sheltering problem which cannot be solved by singly using the optical flow method can be avoided; and the generation of the depth of the video sequence can be automatically realized.
Owner:无锡景象数字技术有限公司

Method for classifying polarimetric SAR (synthetic aperture radar) images on the basis of Cloude decomposition and K-wishart distribution

The invention discloses a method for classifying polarimetric SAR (synthetic aperture radar) images on the basis of Cloude decomposition and K-wishart distribution and mainly solves the problem that the prior art is poor in classification effect and high in computation complexity. The method includes the steps of firstly, reading a polarimetric SAR image to be classified, subjecting each pixel of the image to Cloude decomposition to obtain an entropy H and a scattering angle alpha; secondly, initially partitioning the polarimetric SAR image according to the values of the entropy H and the scattering angle into eight classes; thirdly, subjecting results of eight classes of the whole polarimetric SAR image to iteration to obtain more accurate classification results. Compared with classic classification methods, the method is stricter in partitioning the polarimetric SAR image, better in classification effect, lower in computation complexity and applicable to terrain classification and target recognition of the polarimetric SAR images.
Owner:XIDIAN UNIV

A remote sensing image ground object labeling method based on an attention mechanism convolution neural network

The invention relates to a remote sensing image ground object labeling method based on an attention mechanism convolution neural network, which comprises the following four steps: a computer reads data, constructs convolution neural network of attention mechanism, trains network model, and tests network to obtain labeling result. By adding an attention mechanism module, the invention enables the network to pertinently extract the information of the key position, makes up for the deficiency of the lack of the spatial information at the network end, and improves the classification effect of thenetwork to the ground object details. By using the mechanism of in-depth monitoring and using the characteristics extracted from the middle of the network to supervise the classification, the trainingspeed of the network can be further increased and the comprehensive performance of the network can be improved; through the up-sampling module of deconvolution, the resolution of feature extraction is increased and the method can overcome the problem that small objects are difficult detect to a certain extent, and can automatically classify remote sensing image pixels into corresponding object categories, reduce the trouble of manual interpretation, greatly accelerate the interpretation process, and obtain refined labeling results.
Owner:BEIHANG UNIV +1

Steel rail crack detection method based on multiple acoustic emission event probabilities

The invention relates to a steel rail crack detection method based on multiple acoustic emission event probabilities. According to the steel rail crack detection method, the relative probability output by a convolutional neural network is used as the probability of an acoustic emission event, and the problem that temporal information between samples is not fully used by an existing steel rail crack detection method is solved. The steel rail crack detection method comprises the steps of (1) loading an acoustic emission time domain signal data matrix, and performing FFT (Fast Fourier Transformation) and pretreatment on acoustic emission signals, so that a spectral matrix which is folded into a three-dimensional matrix and a label vector are obtained; (2) setting structural parameters and an initial value of the convolutional network; (3) inputting the spectral matrix, calculating and iterating errors of a convolutional neural network model layer by layer, updating a weight matrix and bias, performing feature extraction, and outputting classification results and classification probabilities of a test set; (4) correcting the outputting of the convolutional neural network on the basis of the multiple acoustic emission event probabilities, and optimizing the classification results. According to the steel rail crack detection method, the classification results are improved according to the multiple acoustic emission event probabilities, so that the detection precision of steel rail crack damages is increased, and high theoretical and practical engineering significance is obtained.
Owner:HARBIN INST OF TECH

Image classification method and system based on migration learning

The invention discloses an image classification method and system based on migration learning. The method comprises the steps that 1, a feature similarity known training set A is utilized to make a training set B of a migration network through a support vector machine; 2, a migration learning network is constructed; 3, the training set B classified in the step 1 is used as a training learning setof the migration learning network, and a migration learning network model with high robustness and good accuracy is obtained through training; and 4, a to-be-classified dataset is introduced into thetrained migration learning network model, and a final classification result is obtained and marked with a tag. Through the image classification method and system, the requirement that a big sample dataset is needed to serve as input when a common RGB image is trained through deep learning is overcome, the problems of overfitting and locally optimal solutions in the training process are avoided, and classification precision is improved to some extent compared with a traditional classification algorithm.
Owner:HUBEI UNIV OF TECH

Geometrical feature-based human face aesthetics analyzing method

The invention provides a geometrical feature-based human face aesthetics analyzing method, which comprises the steps of: carrying out combining description through combined strategy-based local geometrical features and constructing weak classifiers by using memory-based dynamically weighted kernel density estimation (MDKDE); and realizing effective integration of the features by using an Adaboost ensemble learning mechanism so as to obtain accurate classifications for human face aesthetics. Different from the traditional geometrical feature-based human face aesthetics analyzing technique, the geometrical feature-based human face aesthetics analyzing method selects the local geometrical features which are used for describing human face aesthetics from multiple angles, such as Euclidean distance, gradient and area and the like to compose single descriptions for the human face aesthetics, and combined feature description is obtained by combining descriptions of the local geometrical features, and the weak classifiers for Adaboost ensemble learning are constructed by using the MDKDE, thus a good classifying result for randomly input human face images is obtained.
Owner:BEIJING JIAOTONG UNIV

Polarization synthetic aperture radar (SAR) image classification method based on spectral clustering

The invention discloses a polarization synthetic aperture radar (SAR) image classification method based on spectral clustering. The polarization SAR image classification method mainly solves the problem that an existing non-supervision polarization SAR classification method is low in accuracy. The polarization SAR image classification method comprises the steps of extracting scattering entropy H of representation polarization SAR target characteristics to serve as an input characteristic space of a Mean Shift algorithm combining with space coordination information; diving in the characteristic space with the Mean Shift algorithm to obtain M areas; choosing representation points of all areas on the M areas to serve as spectral clustering input to spectrally divide all areas, and further finishing spectral clustering on all pixel points to obtain pre-classification results; and finally classifying the whole image obtained from the pre classification with a Wishart classifier capable of reflecting polarization SAR distribution characteristics in an iteration mode to obtain classification results. Tests show that the polarization SAR image classification method is good in image classification effect and can be applied to non-supervision classification on various polarization SAR images.
Owner:XIDIAN UNIV

System and method for determining a behavior of a classifier for use with business data

A method for detecting change in business data using a statistical classifier process. The method includes inputting a first set of business data in a first format from a real business process from a first data source and storing the first set of business data into one or more memories. The method also includes inputting a second set of business data in a second format from a real business process from a second data source and storing the second set of business data into one or more memories. The method forms a statistical classifier by inputting the first set of business data into a learning process associating with the statistical classifier that processes business the data in the first format. The method stores the classifier into the one or more memories, the classifier being associated with the first set of data in the first format and processes the data from the first data source in the statistical classifier to derive a first result. The method also processes the data from the second data source in the statistical classifier to derive a second result and determines a behavior of the statistical classifier based upon at least the first result and the second result. The method displays information associated with the behavior of the statistical classifier.
Owner:OPENSPAN

Sound source localization based on binaural signals

Techniques are disclosed for sound source localization based on joint learning and evaluation of ITD and ILD representations that are measured in a complementary, correlation-based way using binaural time-frequency spectrums. According to one embodiment, from these measurements and learned representatives, which may, for example, be created by combinations of measurements from signals belonging to the same class, i.e., the same azimuthal location, probability distributions over frequency and class are computed. These probability distributions can be combined over cue and frequency using information-theoretic approaches to get a robust classification of the location and additionally a confidence measure for the quality of the classification result.
Owner:HONDA RES INST EUROPE

Gesture recognition method based on depth sensor

The invention discloses a gesture recognition method based on a depth sensor. The method comprises the steps of sequentially obtaining depth flow information and human skeleton node data; cutting a gesture region; performing positive side and binaryzation are performed on 3D point cloud coordinates of the gesture region; gesture feature extraction, normalization and dimension reduction treatment are performed; gesture features are screened to obtain an optimal gesture feature subset; a support vector machine gesture training classifier is adopted, and a classification result is obtained; filtering is performed on the gesture classification result. The defect in the prior art is overcome, and the gesture recognition precision, stability and efficiency are improved.
Owner:BEIJING HUAJIE IMI TECH CO LTD

Electromyographic signal tumble detection method based on WKFDA

ActiveCN104127181AImprove recognition rateGood anti-noise and anti-interference abilityDiagnostic recording/measuringSensorsMuscle tissueCharacteristic space
The invention relates to an electromyographic signal tumble detection method based on a WKFDA. First, surface electromyographic signals are collected from the relevant muscle tissue of the lower limbs of a human body, the action signal segment of the surface electromyographic signals is determined through an energy threshold value, and fuzzy entropy is extracted from the surface electromyographic signals in the action signal segment to serve as characteristics to be classified; then, characteristic sample points are projected to a characteristic space, linear judgment is performed in the characteristic space, and therefore nonlinear discrimination of an original input space can be achieved in an implicit mode. Due to the contribution that corresponding balance weight is adopted for adjusting sample nuclear matrixes, influences of unbalanced data on the classification performance can be overcome. Due to the adoption of the nonlinear mapping, the data processing capacity of a Fisher linear discrimination algorithm based on nucleuses is greatly improved. The experiment result shows that a high tumble mode average recognition rate is achieved through the method, and the recognition result is superior to that of other classification methods.

Object Detection Using Radar And Vision Defined Image Detection Zone

An object-detection system includes a radar sensor, a camera, and a controller. The radar-sensor is suitable for mounting on a vehicle and is used to detect a radar-signal reflected by an object in a radar-field-of-view. The radar-signal is indicative of a range, range-rate, and a direction to the object relative to the vehicle. The camera is used to capture an image of a camera-field-of-view that overlaps the radar-field-of-view. The controller is in communication with the radar-sensor and the camera. The controller is configured to determine a range-map for the image based on the range and the direction of the radar detection, define a detection-zone in the image based on the range-map, and process only the detection-zone of the image to determine an identity of the object.
Owner:APTIV TECH LTD

Unsupervised domain adaptation classification method based on inter-class matching

The invention discloses an unsupervised domain adaptation classification method based on inter-class matching, so as to solve the technical problem that the present classification method for images between different domains is poor in classification performance. According to the technical scheme, according to samples in a source image domain and a target image domain, the maximum average difference model for classes is built. A linear projection method is used to build a feature representation model for domain migration, the source domain samples and the target domain samples are projected to the same hidden feature space. In joint consideration of the supervision information of the source domain samples and hidden low-rank structural features between samples in the target domain, a robust target domain classification model is built, and all unlabeled samples in the target domain are marked. A joint optimization model with minimization of the distribution difference of the same class between domains as a target is built, an alternating minimization optimization method is used, alternating iteration of the feature representation model and the classification model is carried out until convergence, the optimal target domain classification result is obtained finally, and the classification performance is good.
Owner:NORTHWESTERN POLYTECHNICAL UNIV

Hyperspectral image semi-supervised classification method based on space-spectral information

The invention discloses a hyperspectral image semi-supervised classification method based on space-spectral information. The hyperspectral image semi-supervised classification method combines spectral information and spatial information in a hyperspectral image to act on a support vector machine classifier, adopts a self-training semi-supervised classification framework, utilizes an active learning method as a sample selecting strategy of semi-supervised classification, decomposes initial classification results obtained through semi-supervised classification according to classes so as to obtain various classes of binary images as input images of an edge preserving filter, regards a first principal component content as a reference image of the filter, utilizes the edge preserving filter to perform local smoothing, eliminates noise, and classifies image elements according to a class with maximum probability, thus the classification process is completed. The hyperspectral image semi-supervised classification method combines the spectral information and the spatial information to improve the classifiability of classes, utilizes the self-training semi-supervised classification framework to solve the classification problem of hyperspectral image small samples, can effectively eliminate spot-like errors in the initial classification results, and increases classification precision.
Owner:NORTHWEST UNIV(CN)

System and method for estimating performance of a classifier

InactiveUS20050021290A1Accurate measurementEfficient and maintainable scriptingSpeech analysisNuclear monitoringBusiness dataData mining
A method for estimating the performance of a statistical classifier. The method includes inputting a first set of business data in a first format from a real business process and storing the first set of business data in the first format into memory. The method applying a statistical classifier to the first set of business data and recording its classification decisions and obtaining a labeling that contains the correct decision for each data item. The method includes computing a weight for each data item that reflects its true frequency and computing a performance measure of the statistical classifier based on the weights that reflect true frequency. The method also displays the performance measure to a user.
Owner:OPENSPAN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products