Lensometers and wavefront sensors and methods of measuring aberration
a technology of wavefront sensors and lenses, applied in the direction of optical radiation measurement, refractometers, instruments, etc., can solve the problem that the correction optics provided on the basis of these sphere and cylinder measurements are often not suitable for correcting the vision of a person
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
Embodiment Construction
[0027]FIG. 1 depicts a lensometer 10, which is an optical system for measuring refractive or wave-shaping properties of a test lens 12. The lensometer 10 comprises a light source 14 such as a laser diode. The laser diode light source 14 preferably outputs light at a wavelength of about 550 nanometers (nm) although other wavelengths including infrared wavelengths may be employed to illuminate the test lens 12. Moreover, the laser preferably outputs a beam of light. The light is preferably substantially collimated, for example, preferably at less than about 30 arc seconds. Other types of lasers and light sources may be used for this purpose. In various preferred embodiments, the light source is semi-coherent.
[0028] The lensometer 10 further comprises beam tailoring optics, e.g., beam expanding and collimating optics 16 in the embodiment in FIG. 1. The beam expanding and collimating optics 16 may comprise one or more lenses or other optical elements configured to collect light emitted...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com