Multi-layer coaxial vaso-occlusive device

a vaso-occlusive device and coaxial technology, applied in the field of vaso-occlusive devices, can solve the problems of decreasing and achieve the effects of reducing the contact area, reducing the aggregate friction, and reducing the resistance to device manipulation

Inactive Publication Date: 2005-08-04
MICROVENTION INC
View PDF57 Cites 152 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0013] The outer element is advantageously a helical “over-coil” that is loosely wound (“open-wound”) over the intermediate element, except at proximal and distal end sections, where it is tightly wound (“close-wound”). The close-wound proximal and distal end sections support the inner element, protecting it from damage during deployment and any necessary repositioning, while also securely binding the intermediate element to the inner element at the proximal and distal ends of the device and restraining the hydrogel of the intermediate element from expanding at the respective ends of the device. The open-wound section between the proximal and distal end sections creates a single, continuous helical opening through which the intermediate element expands. The helical configuration of the opening forces the expanded polymeric intermediate element to assume the configuration of a chain of arcuate segments protruding radially outwardly between the coils of the over-coil, rather than that of a continuous polymeric layer having a continuous, uninterrupted exterior surface. Because each of the arcuate segments contacts the interior surface of a microcatheter (e.g., during deployment) primarily at or near a tangential contact point, the total con

Problems solved by technology

This reduced contact area correspondingly reduces the aggregate friction between the polymeric

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Multi-layer coaxial vaso-occlusive device
  • Multi-layer coaxial vaso-occlusive device
  • Multi-layer coaxial vaso-occlusive device

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0025] Referring to FIGS. 1-4, a vaso-occlusive device 10, in accordance with a preferred embodiment of the invention, comprises three elongate, coaxial elements: an inner element 11, a non-metallic intermediate element 12, and a non-expansile outer element 13 that covers at least a portion of the intermediate element. The intermediate element 12 is in intimate contact with both the inner element 11 and the outer element 13.

[0026] The inner element 11 is formed of a flexible, elongate filament or wire that is preferably made of a material that allows visualization under various medical imaging means, such as X-ray, MRI, or ultrasound. Preferably, the inner element 11 is formed from a length of wire made of any of various biocompatible, radiopaque metals, such as platinum, tantalum, tungsten, gold, titanium, nitinol, stainless steel, Elgiloy (cobalt-chromium-nickel), or other suitable alloys known in the art. Alternatively, it can be made from or include non-metallic materials, such...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A vaso-occlusive device includes inner, intermediate, and outer elements arranged coaxially. The inner element is a filamentous element, preferably a microcoil. The intermediate element is made of a non-metallic material, preferably an expansile polymer. The outer element is substantially non-expansile and defines at least one gap or opening through which the intermediate element is exposed. In a preferred embodiment, when the intermediate element is expanded, it protrudes through the at least one gap or opening in the outer element and assumes a configuration with an undulating, convexly-curved outer surface defining a chain of arcuate segments, each having a diameter significantly greater than the diameter of the outer element. The expanded configuration of the intermediate element minimizes friction when the device is deployed through a microcatheter, thereby reducing the likelihood of buckling while maintaining excellent flexibility. The result is a device with enhanced pushability and trackability when deployed through a microcatheter.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application is a Continuation-in-Part of co-pending application Ser. No. 10 / 631,981; filed Jul. 31, 2003, which prior application claims the benefit, under 35 U.S.C. Section 119(e), of provisional application No. 60 / 400,103, filed Jul. 31, 2002, the disclosure of which is incorporated herein by reference.FEDERALLY-SPONSORED RESEARCH OR DEVELOPMENT [0002] Not Applicable BACKGROUND [0003] This invention relates to vaso-occlusive devices, such as vaso-occlusive coils and the like, for the embolization of vascular aneurysms and similar vascular abnormalities. Specifically, the invention is an improvement over existing two layer or two element coaxial vaso-occlusive devices, particularly those having a polymer coating or covering. In particular, the present invention is a three layer or three element coaxial vaso-occlusive device that provides improved durability, pushability, and trackability inside a microcatheter. The characteristic ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): A61B17/00A61B17/12G06K9/00
CPCA61B17/12022A61B17/12145A61B17/1215A61B17/12154A61B17/12177A61B17/1219A61B2017/12054A61B2017/0084A61B2017/00867A61L31/14A61L31/145A61L2430/36A61B2017/00004
Inventor MARTINEZ, GEORGE
Owner MICROVENTION INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products