Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Rotary type fluid machine

a fluid machine and rotary technology, applied in the direction of positive displacement liquid engine, piston pump, liquid fuel engine, etc., can solve the problems of insufficient supply and discharge of working medium, restricted axial movement of valve main body,

Inactive Publication Date: 2005-10-06
HONDA MOTOR CO LTD
View PDF6 Cites 6 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0005] In order to accomplish this object, in accordance with a first aspect of the present invention, there is proposed a rotary fluid machine that includes a casing, a rotor rotatably supported in the casing, an operating part provided in the rotor, and a rotary valve that is provided between the casing and the rotor and controls the intake and discharge of a working medium to and from the operating part via sliding surfaces that are perpendicular to the axis of the rotor, the rotary fluid machine further including a working medium supply pipe provided separately from the rotary valve, the working medium supply pipe being positioned on the axis of the rotor and supplying the working medium to the rotary valve, and sealing means disposed between the working medium supply pipe and the rotary valve, the sealing means having the function of preventing movement of the working medium supply pipe in the axial direction of the rotor from being transmitted to the rotary valve.
[0006] In accordance with this arrangement, since the working medium supply pipe that is disposed on the axis of the rotor and supplies the working medium to the rotary valve is provided separately from the rotary valve, and the sealing means disposed between the working medium supply pipe and the rotary valve has the function of preventing movement of the working medium supply pipe in the axial direction of the rotor from being transmitted to the rotary valve, it is possible to ensure the intimacy of contact between the sliding surfaces of the rotary valve while minimizing, with the sealing means, leakage of the working medium past the outer periphery of the working medium supply pipe, thereby enabling the working medium to be supplied and discharged reliably.
[0008] In accordance with this arrangement, since the sealing means disposed between the working medium supply pipe and the rotary valve is formed from a gland packing, not only is the durability of the sealing means against high temperature working medium increased, but also it is possible to prevent axial movement of the working medium supply pipe from being transmitted to the rotary valve by allowing relative movement between the working medium supply pipe and the rotary valve.
[0010] In accordance with this arrangement, since the working medium that has leaked past the sealing means is recovered by the working medium recovery means, the necessity for replenishing the working medium can be minimized.
[0012] In accordance with this arrangement, since the working medium that has leaked past the sealing means is returned to the downstream side of the operating part via the working medium recovery means, it is possible to prevent the recovered working medium from affecting the performance of the operating part.

Problems solved by technology

However, in this conventional rotary fluid machine, since the working medium supply pipe is fixed to the valve main body, axial movement of the valve main body is restricted by the working medium supply pipe, or vibration of the working medium supply pipe is transmitted to the valve main body.
The intimacy of contact between the sliding surfaces of the valve main body and the rotor is therefore degraded, and there is thus the problem that supply and discharge of the working medium becomes inaccurate.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Rotary type fluid machine
  • Rotary type fluid machine
  • Rotary type fluid machine

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0015] An embodiment of the present invention is explained below with reference to the attached drawings.

[0016] As shown in FIG. 1 to FIG. 3, a rotary fluid machine of the present invention is, for example, an expander M used in a Rankine cycle system, and the thermal energy and the pressure energy of high-temperature, high-pressure steam as a working medium are converted into mechanical energy and output. A casing 11 of the expander M is formed from a casing main body 12, a front cover 15 fitted via a seal 13 in a front opening of the casing main body 12 and joined thereto via a plurality of bolts 14, and a rear cover 18 fitted via a seal 16 in a rear opening of the casing main body 12 and joined thereto via a plurality of bolts 17. An oil pan 19 abuts against a lower opening of the casing main body 12 via a seal 20 and is joined thereto via a plurality of bolts 21. Furthermore, a breather chamber dividing wall 23 is superimposed on an upper face of the casing main body 12, a brea...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A rotary fluid machine is provided that includes a rotary valve (61) for controlling the intake and discharge of a working medium to and from an operating part (49, 57) formed from an axial piston cylinder group, a steam supply pipe (77) that is disposed on an axis (L) of a rotor (27) and supplies steam to the rotary valve (61), the steam supply pipe (77) being provided separately from a rotary valve main body (62), and gland packing sealing means (97) disposed between the steam supply pipe (77) and the rotary valve main body (62). Since the sealing means (97), which is flexible, has the function of preventing movement in the direction of the axis (L) of the steam supply pipe (77) from being transmitted to the rotary valve (61), it is possible to ensure the intimacy of contact of sliding surfaces (68) of the rotary valve (61) while minimizing the leakage of steam past the outer periphery of the steam supply pipe (77) by means of the sealing means (97), thereby enabling the steam to be supplied and discharged reliably.

Description

FIELD OF THE INVENTION [0001] The present invention relates to a rotary fluid machine that includes a casing, a rotor rotatably supported in the casing, an operating part provided in the rotor, and a rotary valve that is provided between the casing and the rotor and controls the intake and discharge of a working medium to and from the operating part via sliding surfaces that are perpendicular to the axis of the rotor. BACKGROUND ART [0002] The rotary valve of this type of rotary fluid machine generally includes a valve main body fixed to the casing so as to be positioned on the axis of the rotor, and controls the supply and discharge of the working medium via sliding surfaces of the fixed valve main body and the rotating rotor. Supply of the working medium to the rotary valve is carried out via a working medium supply pipe fixed to the valve main body so as to be disposed on the axis of the rotor, and the valve main body is resiliently biased toward the rotor so that the working med...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): F01B3/02F04B1/20F04B1/22F04B27/08
CPCF01B3/02F04B1/205F04B1/22F04B27/0808F04B27/0843
Inventor HONMA, KENSUKENAKINO, HIROYUKI
Owner HONDA MOTOR CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products