Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Trocar system and method of use

Inactive Publication Date: 2008-01-10
UNITED STATES SURGICAL CORP
View PDF67 Cites 56 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0007] The present disclosure provides a modular trocar system which overcomes disadvantages associated with previous trocar systems. The presently disclosed modular trocar system satisfies the need for more reliable trocar assemblies while improving manufacturing efficiencies.
[0008] In particular, the present disclosure provides trocar system including a cannula and an obturator assembly being at least partially insertable through the cannula. The obturator assembly including a housing, a penetrating tip disposed at a distal end, an elongated shield including a guard extending from a shaft are movable relative to the penetrating tip, and a latch mechanism disposed generally within the housing. The latch mechanism facilitates changing the configuration of the obturator assembly between a fixed-shield orientation, wherein at least a portion of the guard is maintained to extend at least partially distal of the penetrating tip to prevent puncturing of tissue by the penetrating tip, to a non-fixed shield orientation whereby upon application of force to the distal end of the obturator assembly, the guard and penetrating tip are permitted to move relative one another to facilitate puncturing of tissue by the penetrating tip.

Problems solved by technology

Minimally invasive procedures are continually increasing in number and variation.
Such mechanisms can be complex and often require numerous moving parts to accomplish the release and resetting of a the safety shield lock feature so as to permit the obturator's penetrating tip to function only when desired to facilitate insertion of the trocar assembly and placement of the cannula portion thereof.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Trocar system and method of use
  • Trocar system and method of use
  • Trocar system and method of use

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0040] Referring initially to FIGS. 1 and 2, one embodiment of a modular trocar system in accordance with the present disclosure is designated by reference numeral 100 throughout the several views. Modular trocar system 100 is particularly adapted for use in minimally invasive surgical procedures such as endoscopic or laparoscopic procedures. Generally, modular trocar system 100 includes two principal subassemblies, namely an obturator assembly 110 and a cannula assembly 112. Cannula assembly 112 includes a seal assembly 114 and a cannula 116, as described in detail further herein.

[0041] Except where noted otherwise, the materials utilized in the components of the presently disclosed modular trocar system generally include materials such as either ABS or polycarbonate for housing sections and related components and stainless steel for components that are required to cut tissue. A preferred ABS material is CYCOLAC which is available from General Electric. A preferred polycarbonate m...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A trocar system including a cannula and an obturator assembly being at least partially insertable through the cannula. The obturator assembly including a housing, a penetrating tip disposed at a distal end, an elongated shield including a guard extending from a shaft are movable relative to the penetrating tip, and a latch mechanism disposed generally within the housing. The latch mechanism facilitates changing the configuration of the obturator assembly between a fixed-shield orientation, wherein at least a portion of the guard is maintained to extend at least partially distal of the penetrating tip to prevent puncturing of tissue by the penetrating tip, to a non-fixed shield orientation whereby upon application of force to the distal end of the obturator assembly, the guard and penetrating tip are permitted to move relative one another to facilitate puncturing of tissue by the penetrating tip.

Description

BACKGROUND [0001] 1. Technical Field [0002] The present disclosure relates to trocar systems for inserting cannulas into patients, and more particularly to modular trocar systems and methods of assembly of trocar systems. [0003] 2. Background of Related Art [0004] Minimally invasive procedures are continually increasing in number and variation. Forming a relatively small diameter temporary pathway to the surgical site is the key feature of most minimally invasive surgical procedures. The most common method of providing such a pathway is by inserting a trocar assembly through the skin. In many procedures the trocar is inserted into an insufflated body cavity of a patient. In such procedures, trocar assemblies with seal mechanisms are utilized to provide the necessary pathway to the surgical site while minimizing leakage of insufflation gases through the inserted cannula. [0005] Trocar assemblies typically include an obturator removably inserted through a cannula assembly. The obturat...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): A61B17/34
CPCA61B17/3417A61B2017/0046A61B17/3496A61B17/3474
Inventor STELLON, GENERACENET, DAVID C.STEARNS, RALPH A.LEHMAN, ADAM
Owner UNITED STATES SURGICAL CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products