Catalyst and a Method for Cracking Hydrocarbons

Inactive Publication Date: 2008-12-18
RES INST OF PETROLEUM PROCESSING SINOPEC +1
View PDF18 Cites 12 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0048]The catalyst supplied by this invention by adding a proper content of the transition metal additive of Group VIIIB and the P additive, especially the samples using modified ZSM-5 zeolite as active component simultaneously, may increase the selectivity for propylene in

Problems solved by technology

This method increases low-carbon olefins in a large scale, at the same time it doesn't increase the yield of aromatic extraly and lose the yield of gasoline.
Although the zeolite materials and catalysts disclosed in the prior art could effectively increas

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Catalyst and a Method for Cracking Hydrocarbons
  • Catalyst and a Method for Cracking Hydrocarbons
  • Catalyst and a Method for Cracking Hydrocarbons

Examples

Experimental program
Comparison scheme
Effect test

Example

Example 1

[0064]The preparation of phosphorus-alumina sol: 1.05 kg pseudoboehmite (dry basis) and 3.35 kg deionized water was mixed together and stirred for 30 min, then 4.9 kg concentrated H3PO4 (chemical pure, 85 wt % of H3PO4) was added into the slurry under stirring. The obtained slurry was heated to 70° C. and reacted for 45 min at this temperature to form the colorless and transparent phosphorus-alumina sol with a P2O5 content of 30.6 wt % and an Al2O3 content of 10.5 wt % as well as pH=1.7.

[0065]1.75 kg A1 (dry basis), 1.4 kg kaolin (dry basis), 0.65 kg pseudoboehmite (dry basis), 6.2 kg deionized water and 2.79 kg alumina sol were mixed together and stirred for 120 min, then 1 L aqueous FeCl3.6H2O solution (having 100 g Fe2O3) was added into the slurry under stirring. The pH value of the slurry is 3.0. After stirring for another 45 min, 1.22 kg phosphorus-alumina sol was added into the slurry and stirred evenly. Microspheres with average particle size of 65 μm were obtained b...

Example

Example 2

[0067]1.84 kg A1 (dry basis), 1.33 kg kaolin (dry basis), 0.98 kg pseudoboehmite (dry basis), 7.2 kg deionized water and 2.79 kg alumina sol were mixed together and stirred for 120 min, then 1 L aqueous FeCl3.6H2O solution (having 250 g Fe2O3) was added into the slurry under stirring. The pH value of the slurry is 3.0. The slurry was stirred for another 45 min. Then microspheres with average particle size of 65 μm were obtained by the spray-drying of the slurry at input temperature of 500V and exhaust (output) temperature of 180° C. The microspheres with 36.8 wt % A1, 26.6 wt % kaolin, 31.6 wt % Al2O3 and 5.0 wt % Fe additive (calculated by Fe2O3) were obtained after calcination at 500° C. for 1 h.

[0068]1 kg microspheres obtained above (dry basis), 10 L deionized water and 100 g (NH4)2HPO4 were mixed together. The obtained slurry was heated to 60° C. under stirring and reacted for 20 min at this temperature. The slurry was vacuum-filtrated and dried. The catalyst ZJ2 with 3...

Example

Example 3

[0070]1.94 kg A1 (dry basis), 1.91 kg pseudoboehmite (dry basis), 7.2 kg deionized water and 2.79 kg alumina sol were mixed together and stirred for 120 min, then 1 L aqueous FeCl3.6H2O solution (having 550 g Fe2O3) was added into the slurry under stirring. The pH value of the slurry is 3.0. The slurry was stirred for another 45 min. Then microspheres with average particle size of 65 μm were obtained by the spray-drying. Of the slurry at input temperature of 500V and exhaust temperature of 180° C. The microspheres with 38.8 wt % A1, 50.2 wt % Al2O3 and 11 wt % Fe additive (calculated by Fe2O3) were obtained after calcination at 500° C. for 1 h.

[0071]1 kg microspheres obtained above (dry basis), 10 L deionized water and 210 g (NH4)2HPO4 were mixed together. The obtained slurry was heated to 60° C. under stirring and reacted for 20 min. The slurry was vacuum-filtrated and dried. The catalyst ZJ3 with 35 wt % A1, 45.1 wt % Al2O3, 9.9 wt % Fe additive (calculated by Fe2O3) and ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Temperatureaaaaaaaaaa
Temperatureaaaaaaaaaa
Timeaaaaaaaaaa
Login to view more

Abstract

The invention discloses a catalyst and a method for cracking hydrocarbons. The catalyst comprises, calculated by dry basis, 10˜65 wt % ZSM-5 zeolite, 0˜60 wt % clay, 15˜60 wt % inorganic oxide binder, 0.5˜15 wt % one or more metal additives selected from the metals of Group VIIIB and 2˜25 wt % P additive, in which the metal additive is calculated by metal oxide and the P additive is calculated by P2O5. The method for cracking hydrocarbons using this catalyst increases the yield of FCC liquefied petroleum gas (LPG) and the octane number of FCC gasoline, as well as it increases the concentration of propylene in LPG dramatically.

Description

TECHNICAL FIELD[0001]The present invention relates to a catalyst and a method for cracking hydrocarbons. More particularly, the present invention relates to a catalyst and a method for cracking hydrocarbons used to increase the concentration of propylene in FCC liquefied petroleum gas (LPG).TECHNICAL BACKGROUND[0002]Propylene is an important organic chemical raw material. With the rapid increase of the demand for the derivatives such as polypropylene, the requirement for propylene in the whole world is increased rapidly year by year. Fluid catalytic cracking is one of the most important technologies to produce light olefins and propylene. As for most of the FCC apparatus, using the catalyst or the addition agent containing zeolite with MFI structure is an effective technology in order to increase light olefins and propylene.[0003]U.S. Pat. No. 3,758,403 disclosed earlier that the method by adding ZSM-5 zeolite in the FCC catalyst might increase the octane number of gasoline and the ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): C10G11/05
CPCB01J27/1853B01J29/46B01J35/0006B01J35/002B01J2229/42C10G11/02C10G11/05C10G47/16C10G2300/4018C10G2400/02B01J29/42B01J27/18
Inventor LONG, JUNJIANG, WENBINXU, MINGDETIAN, HUIPINGLUO, YIBINSHU, XINGTIANZHANG, JIUSHUNCHEN, BEIYANSONG, HAITAO
Owner RES INST OF PETROLEUM PROCESSING SINOPEC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products