Electric compressor

a compressor and electric technology, applied in the direction of positive displacement liquid engines, piston pumps, liquid fuel engines, etc., can solve the problems of excessive cancellation of thrust load generation at the rotary shaft, etc., to achieve good surge property, reduce size, weight and cost, and high compression efficiency

Active Publication Date: 2012-08-30
HONDA MOTOR CO LTD
View PDF0 Cites 5 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0009] An object of the present invention is to improve an electric compressor, and more specifically to provide an electric compressor which enables reduction in size, weight and cost, as well as having high compression efficiency and good surge property, in order to solve the above-mentioned disadvantages.
[0011] According to the electric compressor of the present invention, the rotary shaft is sandwiched by the thrust air bearing at a predetermined pressure, so that the positioning of the rotary shaft may be carried out accurately. As such, the electric compressor of the present invention is capable of maintaining the clearance between the impeller and the compression casing accurately. Further, the pressure of gas generated by the rotation of the impeller is introduced into the pressure chamber. Therefore, the load cancellation section receives pressure in the direction opposite to the load in the axial direction of the rotary shaft generated by the rotation of the impeller. When the number of rotations of the impeller increases, the thrust load proportional to the square of the number of rotations is generated. However, because the pressure of gas corresponding to the thrust load acts on the load cancellation portion in the direction opposite thereto, the thrust load generated at the rotary shaft may be cancelled out.
[0012] Therefore, even when the number of rotations of the impeller increases, excessive thrust load is not generated at the rotary shaft. By doing so, the movement of the impeller in the axial direction may be restrained even under the condition where the impeller is rotating at high speed, so that the clearance between the impeller and the compression casing may be maintained accurately. As seen from above, the electric compressor of the present invention is capable of maintaining the clearance between the impeller and the compression casing accurately not only when the impeller is at halt and when the same is rotating at low speed, but also when the impeller is rotating at high speed. Therefore, the electric compressor of the present invention is capable of stabilizing the compression efficiency, and also restrain occurrence of surging. Further, by providing the load cancellation section, there is no need to increase the load bearing ability of the thrust air bearing. Therefore, the present invention is capable of reducing the size, weight and cost of the thrust air bearing.

Problems solved by technology

However, because the pressure of gas corresponding to the thrust load acts on the load cancellation portion in the direction opposite thereto, the thrust load generated at the rotary shaft may be cancelled out.
Therefore, even when the number of rotations of the impeller increases, excessive thrust load is not generated at the rotary shaft.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Electric compressor
  • Electric compressor
  • Electric compressor

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0017] Hereinafter, an electric turbo compressor as an embodiment of an electric compressor of the present invention will be now explained with reference to FIG. 1 through FIG. 3. FIG. 1 is an explanatory cross-sectional view of an electric turbo compressor of the present embodiment, FIG. 2 is an enlarged view of a thrust bearing portion in FIG. 1, and FIG. 3 is a graph showing a relationship between a thrust load and the like generated at the rotary shaft and the number of rotations.

[0018] An electric turbo compressor 1 of the present embodiment is an air compressor used in a fuel cell system. As shown in FIG. 1, the electric turbo compressor 1 includes a housing comprised of a compression casing 2, a motor casing 3, and a canceller casing 4, the housing houses therein an impeller 5, a rotary shaft 6, a thrust canceller (a load cancellation section) 7, and a motor unit 8. Further, the rotary shaft 6 is supported by a thrust air bearing 9 in its thrust direction. Still further, the...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

An electric turbo compressor is an air compressor to be used in a fuel cell system, and includes a housing comprised of a compression casing, a motor casing, and a canceller casing, and the housing houses therein an impeller, a rotary shaft, a thrust canceller (a load cancellation section), and a motor unit. The rotary shaft is supported by a thrust air bearing in its thrust direction, and is axially supported by a radial air bearing in its rotating direction. A thrust load is generated at the rotary shaft when the number of rotations of the impeller increases. The pressure of the compressed air acts to the pressure chamber from the compressed air lead-out section of the compression casing via the compressed air passage, and this pressure acts on the canceller flange of the canceller shaft so as to generate a load towards the rear of the rotary shaft. Therefore, the thrust load is cancelled out.

Description

BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to an electric compressor which compresses gas with the rotation of an impeller, by rotating a rotary shaft and the impeller with a motor unit. [0003] 2. Description of the Related Art [0004] In the conventional electric compressor, for example, there is disclosed a turbo machine equipped with vane wheels (hereinafter referred to as impellers) to both sides of the rotary shaft, in Japanese Patent Laid-Open No. H11-13686 (hereinafter referred to as Patent Document 1). Generally, in this type of compressor, a thrust load proportional to a square of a number of rotations of the impeller generates in the axial direction of the rotary shaft, when the number of rotations of the impeller increases. In the turbo machine disclosed in Patent Document 1, the thrust load is cancelled by making the thrust load generated by the impellers provided to both sides of the rotary shaft to act in a directio...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): F04D29/051F01D3/02
CPCF04D29/051F04D29/0513F04D29/0516F04D29/057F16C17/024F16C17/042F16C2360/44
Inventor TAKADO, JUNJISATO, TAKAHARU
Owner HONDA MOTOR CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products