Transmitting device, receiving device, transmitting method, and receiving method

a technology of transmitting device and receiving device, which is applied in the direction of transmission path sub-channel allocation, wireless communication, wireless commuication services, etc., can solve the problems of inability to assign downlink data to the terminal, decrease in system throughput, and shorten the resources of the system, so as to reduce the inequalities of the reception characteristics of control information

Active Publication Date: 2014-03-13
SUN PATENT TRUST
View PDF9 Cites 16 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0032]According to the present invention, an inequality in reception characteristics of control information can be reduced by equalizing resources available for ePDCCHs among terminals.

Problems solved by technology

In addition, taking into consideration the introduction of various devices as radio communication terminals in M2M (machine to machine) communication and the like as well as an increase in the number of multiplexing target terminals due to MIMO transmission technology, there is a concern regarding a shortage of resources in a mapping region for a PDCCH (Physical Downlink Control Channel) that is used for a control signal (that is, a “PDCCH region”).
If a control signal (PDCCH) cannot be mapped due to such a resource shortage, downlink data cannot be assigned to the terminals.
Therefore, even if a resource region in which downlink data is to be mapped (i.e., a “PDSCH (Physical Downlink Shared Channel) region”) is available, the resource region may not be used, which causes a decrease in the system throughput.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Transmitting device, receiving device, transmitting method, and receiving method
  • Transmitting device, receiving device, transmitting method, and receiving method
  • Transmitting device, receiving device, transmitting method, and receiving method

Examples

Experimental program
Comparison scheme
Effect test

embodiment 1

[Communication System Overview]

[0055]A communication system according to the present embodiment includes a transmission apparatus and a reception apparatus. In particular, the present embodiment is described by taking base station 100 as the transmission apparatus and taking terminal 200 as the reception apparatus. The communication system is, for example, an LTE-Advanced system. Base station 100 is, for example, a base station that supports the LTE-Advanced system, and terminal 200 is, for example, a terminal that supports the LTE-Advanced system.

[0056]FIG. 5 is a block diagram illustrating main components of base station 100 according to the present embodiment.

[0057]In base station 100, search space configuration section 102 configures search spaces formed by a plurality of “mapping candidates” based on aggregation level values. Each mapping candidate is formed of the same number of CCEs (control channel elements) as the aggregation level value. The CCEs are obtained by dividing e...

configuration example 1

[0114]FIG. 9 illustrates an example of configuring search spaces according to configuration example 1. The search spaces shown in FIG. 9 are configured for a single terminal 200, and search spaces different from the search spaces shown in FIG. 9 are configured for terminals 200 other than terminal 200 corresponding to FIG. 9.

[0115]As shown in FIG. 9, for aggregation level 1, CCE 0, CCE 5, CCE 10 and CCE 15 are configured as one mapping candidate. That is, for aggregation level 1, CCE #(4N), CCE #(4N+1), CCE #(4N+2) and CCE #(4N+3) are each configured as a single mapping candidate.

[0116]Further, as shown in FIG. 9, for aggregation level 2, a pair of CCE 1 and CCE 3, a pair of CCE 4 and CCE 14, a pair of CCE 9 and CCE 3, and a pair of CCE 12 and CCE 14 are each configured as a single mapping candidate. That is, for aggregation level 2, a pair of CCE #(4N) and CCE #(4N+2) or a pair of CCE #(4N+1) and CCE #(4N+3) is configured as one mapping candidate.

[0117]Further, as shown in FIG. 9, ...

configuration example 2

[0119]“Localized allocation” which allocates ePDCCHs collectively at positions close to each other on the frequency band, and “distributed allocation” which allocates ePDCCHs by distributing the ePDCCHs on the frequency band are being studied as allocation methods for ePDCCHs (for example, see FIG. 10). Localized allocation is an allocation method for obtaining a frequency scheduling gain, and can be used to allocate ePDCCHs to resources that have favorable channel quality based on channel quality information. Distributed allocation distributes ePDCCHs on the frequency axis, and can obtain a frequency diversity gain. In the LTE-Advanced system, both a search space for localized allocation and a search space for distributed allocation may be configured (for example, see FIG. 10).

[0120]Therefore, according to configuration example 2, a case is described in which a search space for localized allocation is configured for aggregation level 2 (aggregation level 1), search spaces for both ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

In a transmitting device, each of the plurality of mapping candidates that make up the search space is configured from the same number of control channel elements as an aggregation level value, the control channel elements are obtained by dividing each physical resource block into a predetermined number, and the quantity of resource elements contained in each of the predetermined number of control channel elements in each physical resource block adopts at least two types of values. A search space setting unit (102) sets a search space of which the aggregation level value is 2 or more so that, between a plurality of mapping candidates, variation in the total quantity of resource elements contained in the control channel elements that make up the mapping candidates is as small as possible.

Description

TECHNICAL FIELD[0001]The present invention relates to a transmission apparatus, a reception apparatus, a transmission method, and a reception method.BACKGROUND ART[0002]In recent years, accompanying the adoption of multimedia information in cellular mobile communication systems, it has become common to transmit not only speech data but also a large amount of data such as still image data and moving image data. Furthermore, studies are being actively conducted in LTE-Advanced (Long Term Evolution Advanced) to realize high transmission rates by utilizing broad radio bands, Multiple-Input Multiple-Output (MIMO) transmission technology, and interference control technology.[0003]In addition, taking into consideration the introduction of various devices as radio communication terminals in M2M (machine to machine) communication and the like as well as an increase in the number of multiplexing target terminals due to MIMO transmission technology, there is a concern regarding a shortage of r...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): H04W72/04
CPCH04W72/0406H04L5/0053H04W72/1268H04L5/0023H04L1/0057H04W72/23H04W72/20H04L5/0048
Inventor HORIUCHI, AYAKONISHIO, AKIHIKO
Owner SUN PATENT TRUST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products