Optical lens assembly

Inactive Publication Date: 2017-09-21
GENIUS ELECTRONICS OPTICAL XIAMEN
View PDF5 Cites 13 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The optical lens assembly described in this patent text has several advantages. First, its design allows for a smaller system length, making it ideal for use as a telescopic optical lens assembly or for taking pictures of distant objects. Second, its concave and convex shape design works together with the arrangement of the lens elements to enhance its ability to capture images. Various embodiments of this optical lens assembly are described in detail below.

Problems solved by technology

However, simply scaling down an optical lens assembly with the favorable image quality does not guarantee the subsequent manufacture of the optical lens assembly characterized by favorable image quality and microminiaturization.
As such, the technical barrier of the micro optical lens assembly is apparently higher than that of the conventional optical lens assembly.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Optical lens assembly
  • Optical lens assembly
  • Optical lens assembly

Examples

Experimental program
Comparison scheme
Effect test

first embodiment

[0107]The first lens element 3 has positive refracting power. The object-side surface 31 of the first lens element 3 is a convex surface and has a convex portion 311 in the vicinity of the optical axis I and a convex portion 312 in the vicinity of the periphery. The image-side surface 32 of the first lens element 3 is a convex surface and has a convex portion 321 in the vicinity of the optical axis I and a convex portion 322 in the vicinity of the periphery. In the first embodiment, the object-side surface 31 and the image-side surface 32 of the first lens element 3 are both aspheric surfaces.

[0108]The second lens element 4 has negative refracting power. The object-side surface 41 of the second lens element 4 is a convex surface and has a convex portion 411 in the vicinity of the optical axis I and a convex portion 412 in the vicinity of the periphery. The image-side surface 42 of the second lens element 4 is a concave surface and has a concave portion 421 in the vicinity of the opt...

second embodiment

[0155]The aspheric coefficients of the object-side surface 31 of the first lens element 3 to the image-side surface 62 of the fourth lens element 6 in the formula (1) are indicated in FIG. 13 according to the

[0156]In addition, the relationship among the crucial parameters pertaining to the optical lens assembly 10 in the second embodiment is indicated in FIG. 82 and FIG. 83.

[0157]In FIG. 11A which illustrates the longitudinal spherical aberration in the second embodiment, the measurement is made on the condition that the pupil radius is 1.4729 mm, and the imaging point deviation of the off-axis ray at different heights is controlled within a range of ±0.008 mm. In FIG. 11B and FIG. 11C which illustrate two diagrams of field curvature aberrations, the focal length variation of the three representative wavelengths within the entire field of view falls within the range of ±0.04 mm. In FIG. 11D, the diagram of distortion aberration shows that the distortion aberration in the second embo...

third embodiment

[0161]The aspheric coefficients of the object-side surface 31 of the first lens element 3 to the image-side surface 62 of the fourth lens element 6 in the formula (1) are indicated in FIG. 17 according to the

[0162]In addition, the relationship among the crucial parameters pertaining to the optical lens assembly 10 in the third embodiment is indicated in FIG. 82 and FIG. 83.

[0163]In FIG. 15A which illustrates the longitudinal spherical aberration in the third embodiment, the measurement is made on the condition that the pupil radius is 1.4729 mm, and the imaging point deviation of the off-axis ray at different heights is controlled within a range of ±0.017 mm. In FIG. 15B and FIG. 15C which illustrate two diagrams of field curvature aberrations, the focal length variation of the three representative wavelengths within the entire field of view falls within the range of ±0.21 mm. In FIG. 15D, the diagram of distortion aberration shows that the distortion aberration in the third embodim...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

An optical lens assembly includes first, second, third, and fourth lens elements arranged in order from an object side to an image side along an optical axis. Each lens element has an object-side surface and an image-side surface. The object-side surface of the first lens element has a convex portion in a vicinity of a periphery. The second lens element has negative refracting power. The object-side surface of the third lens element has a concave portion in a vicinity of a periphery. The image-side surface of the fourth lens element has a convex portion in a vicinity of a periphery.

Description

CROSS-REFERENCE TO RELATED APPLICATION[0001]This application claims the priority benefit of Chinese application serial no. 201610157010.5, filed on Mar. 18, 2016. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.BACKGROUND OF THE INVENTION[0002]Field of the Invention[0003]The invention relates to a lens assembly; more particularly, the invention relates to an optical lens assembly.[0004]Description of Related Art[0005]The specification of portable electronic products (e.g., mobile phones, cameras, tablet PCs, personal digital assistants, and automotive cameras) is ever-changing, and the key components of the portable electronic products, i.e., optical lens assemblies, have been developed diversely. The optical lens assembly not only can be applied to take images and record video clips but also can be installed in a dashboard camera or employed for environmental surveillance. As image sensing techn...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): G02B13/00G02B9/34
CPCG02B13/004G02B9/34G02B13/0015G02B9/60G02B13/0045
Inventor JHANG, JIA-SINCHEN, BAINALI, GUANGYUN
Owner GENIUS ELECTRONICS OPTICAL XIAMEN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products