Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Microphone device, telephone device, and decoupling circuit

Active Publication Date: 2021-06-17
WISTRON CORP
View PDF0 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The invention provides a microphone device with a mute button that prevents the other party from hearing the mute button press during a phone call. The device includes a decoupling circuit that eliminates noise generated by the mute button when pressed. This allows the microphone device to function as a mute without being noticed by the other party, improving the quality of phone calls and preventing background noise and switching noise from affecting the call.

Problems solved by technology

However, because the microphone of the Internet telephony usually uses only a simple mechanical switch to implement switching to the silent mode, it causes noise on the speaker of the other side and results in poor sound quality.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Microphone device, telephone device, and decoupling circuit
  • Microphone device, telephone device, and decoupling circuit
  • Microphone device, telephone device, and decoupling circuit

Examples

Experimental program
Comparison scheme
Effect test

first embodiment

[0017]FIG. 1 is a schematic circuit diagram of a telephone device 100 according to the invention. The telephone device 100 includes a microphone device 110 and a telephone set device 120. The microphone device 110 mainly includes an audio source (for example, a microphone ECM) and a decoupling circuit 112. In addition, because the microphone ECM in the present embodiment is a single-ended input microphone, the microphone device 110 further includes a first resistor-capacitor circuit 114.

[0018]The microphone ECM includes a first terminal N1 and a second terminal N2. Because the microphone ECM in FIG. 1 of the present embodiment is a single-ended input microphone ECM, the first terminal N1 is an output terminal of the microphone ECM, and the second terminal N2 is a ground terminal of the microphone ECM. In an application of the present embodiment, the first terminal N1 may be considered as the ground terminal of the microphone ECM and the second terminal N2 may be considered as the ou...

second embodiment

[0025]FIG. 3 is a schematic circuit diagram of a telephone device 300 according to the invention. A difference between the telephone device 300 in FIG. 3 and the telephone device 100 in FIG. 1 mainly lies in that, the telephone device 300 in FIG. 3 uses a differential input microphone ECM and a corresponding telephone set device 320. In an application of the present embodiment, any type of differential input microphone ECM may be used to implement the microphone ECM in FIG. 3. Therefore, in addition to the microphone ECM, the decoupling circuit 112, and the first resistor-capacitor circuit 114, the telephone device 300 in FIG. 3 further includes a second resistor-capacitor circuit 316. The first resistor-capacitor circuit 114 is coupled between a first terminal N1 of an audio source (the microphone ECM) and a first output terminal OUTPUT1 of a microphone device 310.

[0026]The second resistor-capacitor circuit 316 is coupled between a second terminal N2 of the audio source (the microp...

third embodiment

[0027]FIG. 4 is a schematic circuit diagram of a telephone device 400 according to the invention. The telephone device 400 in FIG. 4 includes a microphone device 410 and a telephone set device 120, and the microphone device 410 includes a microphone ECM, a decoupling circuit 412, and a first resistor-capacitor circuit 114. A difference between the telephone device 400 in FIG. 4 and the telephone device 100 in FIG. 1 mainly lies in that, a connection relationship between circuit components of the decoupling circuit 412 in the microphone device 410 in FIG. 4 is different from that of the decoupling circuit 112 in FIG. 1. A first terminal of a first capacitor C1 in the decoupling circuit 412 is coupled to a second terminal N2 of an audio source (the microphone ECM). A first terminal of a first resistor R1 is coupled to a second terminal of a first capacitor C1. A second terminal of the first resistor R1 is coupled to a first terminal N1 of the audio source (the microphone ECM). A first...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A microphone device, a telephone device, and a decoupling circuit are provided. The decoupling circuit includes a first capacitor, a first resistor, and a switch. A first terminal of the first capacitor is coupled to a first terminal of an audio source. A first terminal of the first resistor is coupled to a second terminal of the first capacitor, and a second terminal of the first resistor is coupled to a second terminal of the audio source. A first terminal of the switch is coupled to the second terminal of the first capacitor and the first terminal of the first resistor, and a second terminal of the switch is coupled to the second terminal of the audio source. The first capacitor and the first resistor are configured to absorb noise generated by the switch during switching.

Description

CROSS-REFERENCE TO RELATED APPLICATION[0001]This application claims the priority benefit of Taiwan application serial no. 108146159, filed on Dec. 17, 2019. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.BACKGROUND OF THE INVENTION1. Field of the Invention[0002]The invention relates to a circuit design technology of eliminating noise, and more particularly, to a microphone device, a telephone device, and a decoupling circuit which eliminate noise.2. Description of Related Art[0003]Internet telephony (or referred to as Voice over Internet Protocol (VoIP)) achieves a voice call and a multimedia conference through the Internet Protocol (IP), that is, performs communications through the Internet. In addition, during a call, when a user is in a noisy environment or having a confidential conversation, the user hopes that a microphone of the Internet telephony can switch to a silent mode, to prevent co...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): H04R3/00H04R19/04H03F3/00
CPCH04R3/00H04R2499/11H03F3/005H04R19/04H04R1/08H04R1/083H04R19/016H04R2410/03
Inventor LEE, HSIN-CHUNCHEN, I-MINGHSUEH, CHANG-YI
Owner WISTRON CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products